已知二次函数的图象经过,两点.
(1)求,的值.
(2)二次函数的图象与轴是否有公共点?若有,求公共点的坐标;若没有,请说明情况.
已知二次函数图象的顶点坐标为,该二次函数图象的对称轴与轴的交点为,是这个二次函数图象上的点,是原点.
(1)不等式是否成立?请说明理由;
(2)设是的面积,求满足的所有点的坐标.
综合与探究
如图,抛物线与轴交于,两点(点在点的左侧),与轴交于点,连接,.点是第四象限内抛物线上的一个动点,点的横坐标为,过点作轴,垂足为点,交于点,过点作交轴于点,交于点.
(1)求,,三点的坐标;
(2)试探究在点运动的过程中,是否存在这样的点,使得以,,为顶点的三角形是等腰三角形.若存在,请直接写出此时点的坐标;若不存在,请说明理由;
(3)请用含的代数式表示线段的长,并求出为何值时有最大值.
已知抛物线与轴相交于、两点(点在点的左侧),并与轴相交于点.
(1)求、、三点的坐标,并求的面积;
(2)将抛物线向左或向右平移,得到抛物线,且与轴相交于、两点(点在点的左侧),并与轴相交于点,要使△和的面积相等,求所有满足条件的抛物线的函数表达式.
已知抛物线与轴相交于和两点,并与轴相交于点.抛物线与关于坐标原点对称,点、在上的对应点分别为、
(1)求抛物线的函数表达式;
(2)在抛物线上是否存在点,使得△的面积等于△的面积?若存在,求点的坐标;若不存在,请说明理由.
在同一直角坐标系中,抛物线与抛物线关于轴对称,与轴交于、两点,其中点在点的左侧.
(1)求抛物线,的函数表达式;
(2)求、两点的坐标;
(3)在抛物线上是否存在一点,在抛物线上是否存在一点,使得以为边,且以、、、四点为顶点的四边形是平行四边形?若存在,求出、两点的坐标;若不存在,请说明理由.
在平面直角坐标系中,点 为坐标原点,抛物线 经过点 和
(1)试判断该抛物线与 轴交点的情况;
(2)平移这条抛物线,使平移后的抛物线经过点 ,且与 轴交于点 ,同时满足以 、 、 为顶点的三角形是等腰直角三角形,请你写出平移过程,并说明理由.
某班"数学兴趣小组"对函数 的图象和性质进行了探究,探究过程如下,请补充完整.
(1)自变量 的取值范围是全体实数, 与 的几组对应值列表如下:
|
|
|
|
|
|
0 |
1 |
2 |
|
3 |
|
|
|
3 |
|
|
|
0 |
|
0 |
|
3 |
|
其中, .
(2)根据表中数据,在如图所示的平面直角坐标系中描点,并画出了函数图象的一部分,请画出该函数图象的另一部分.
(3)观察函数图象,写出两条函数的性质.
(4)进一步探究函数图象发现:
①函数图象与 轴有 个交点,所以对应的方程 有 个实数根;
②方程 有 个实数根;
③关于 的方程 有4个实数根时, 的取值范围是 .
在平面直角坐标系中,抛物线与轴交于点、(点在点的左侧),与轴交于点.
(1)求直线的表达式;
(2)垂直于轴的直线与抛物线交于点,,,,与直线交于点,,若,结合函数的图象,求的取值范围.
若x1、x2是关于一元二次方程ax2+bx+c(a≠0)的两个根,则方程的两个根x1、x2和系数a、b、c有如下关系:x1+x2=-,x1•x2=.把它称为一元二次方程根与系数关系定理.如果设二次函数y=ax2+bx+c(a≠0)的图象与x轴的两个交点为A(x1,0),B(x2,0).利用根与系数关系定理可以得到A、B两个交点间的距离为:AB=|x1-x2|=;
参考以上定理和结论,解答下列问题:
设二次函数y=ax2+bx+c(a>0)的图象与x轴的两个交点A(x1,0),B(x2,0),抛物线的顶点为C,显然△ABC为等腰三角形.
(1)当△ABC为直角三角形时,求b2-4ac的值;
(2)当△ABC为等边三角形时,求b2-4ac的值.
请阅读下列材料:若是关于的一元二次方程的两个根,则方程的两个根和系数有如下关系:. 我们把它们称为根与系数关系定理.
如果设二次函数的图象与x轴的两个交点.利用根与系数关系定理我们又可以得到A、B两个交点间的距离为:
请你参考以上定理和结论,解答下列问题:
设二次函数的图象与x轴的两个交点为,抛物线的顶点为,显然为等腰三角形。
(1)当为等腰直角三角形时,求的值,
(2)当为等边三角形时,求的值,
(3)设抛物线与轴的两个交点为、,顶点为,且,试问如何平移此抛物线,才能使?
(年贵州省贵阳市)如图,经过点C(0,﹣4)的抛物线()与x轴相交于A(﹣2,0),B两点.
(1)a 0, 0(填“>”或“<”);
(2)若该抛物线关于直线x=2对称,求抛物线的函数表达式;
(3)在(2)的条件下,连接AC,E是抛物线上一动点,过点E作AC的平行线交x轴于点F.是否存在这样的点E,使得以A,C,E,F为顶点所组成的四边形是平行四边形?若存在,求出满足条件的点E的坐标;若不存在,请说明理由.
(年青海省中考)如图,二次函数的图象与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C.该抛物线的顶点为M.
(1)求该抛物线的解析式;
(2)判断△BCM的形状,并说明理由;
(3)探究坐标轴上是否存在点P,使得以点P、A、C为顶点的三角形与△BCM相似?若存在,请直接写出点P的坐标;若不存在,请说明理由.
(年新疆乌鲁木齐市)抛物线与x轴交于A,B两点(OA<OB),与y轴交于点C.
(1)求点A,B,C的坐标;
(2)点P从点O出发,以每秒2个单位长度的速度向点B运动,同时点E也从点O出发,以每秒1个单位长度的速度向点C运动,设点P的运动时间为t秒(0<t<2).
①过点E作x轴的平行线,与BC相交于点D(如图所示),当t为何值时,的值最小,求出这个最小值并写出此时点E,P的坐标;
②在满足①的条件下,抛物线的对称轴上是否存在点F,使△EFP为直角三角形?若存在,请直接写出点F的坐标;若不存在,请说明理由.
试题篮
()