小明同学在一次社会实践活动中,通过对某种蔬菜在1月份至7月份的市场行情进行统计分析后得出如下规律:
①该蔬菜的销售单价 (单位:元 千克)与时间 (单位:月份)满足关系: ;
②该蔬菜的平均成本 (单位:元 千克)与时间 (单位:月份)满足二次函数关系 .
已知4月份的平均成本为2元 千克,6月份的平均成本为1元 千克.
(1)求该二次函数的解析式;
(2)请运用小明统计的结论,求出该蔬菜在第几月份的平均利润 (单位:元 千克)最大?最大平均利润是多少?(注:平均利润 销售单价 平均成本)
已知:如图所示,在平面直角坐标系 中,四边形 是矩形, , ,动点 从点 出发,沿射线 方向以每秒2个单位长度的速度运动;同时,动点 从点 出发,沿 轴正半轴方向以每秒1个单位长度的速度运动.设点 、点 的运动时间为 .
(1)当 时,求经过点 , , 三点的抛物线的解析式;
(2)当 时,求 的值;
(3)当线段 与线段 相交于点 ,且 时,求 的值;
(4)连接 ,当点 , 在运动过程中,记 与矩形 重叠部分的面积为 ,求 与 的函数关系式.
某电子科技有限公司用160万元,作为新产品的研发费用,成功研制出了一种市场急需的电子产品,已于当年投入生产并进行销售.已知生产这种电子产品的成本为4元 件,在销售过程中发现:每年的年销售量 (万件)与销售价格 (元 件)的关系如图所示,其中 为反比例函数图象的一部分, 为一次函数图象的一部分.设公司销售这种电子产品的年利润为 (万元).(注:若上一年盈利,则盈利不计入下一年的年利润;若上一年亏损,则亏损计作下一年的成本.
(1)请求出 (万件)与 (元 件)之间的函数关系式;
(2)求出第一年这种电子产品的年利润 (万元)与 (元 件)之间的函数关系式,并求出第一年年利润的最大值.
(3)假设公司的这种电子产品第一年恰好按年利润 (万元)取得最大值时进行销售,现根据第一年的盈亏情况,决定第二年将这种电子产品每件的销售价格 (元 定在8元以上 ,当第二年的年利润不低于103万元时,请结合年利润 (万元)与销售价格 (元 件)的函数示意图,求销售价格 (元 件)的取值范围.
如图①,将南北向的中山路与东西向的北京路看成两条直线,十字路口记作点 .甲从中山路上点 出发,骑车向北匀速直行;与此同时,乙从点 出发,沿北京路步行向东匀速直行.设出发 时,甲、乙两人与点 的距离分别为 、 .已知 、 与 之间的函数关系如图②所示.
(1)求甲、乙两人的速度;
(2)当 取何值时,甲、乙两人之间的距离最短?
超市销售某种儿童玩具,如果每件利润为40元(市场管理部门规定,该种玩具每件利润不能超过60元),每天可售出50件.根据市场调查发现,销售单价每增加2元,每天销售量会减少1件.设销售单价增加 元,每天售出 件.
(1)请写出 与 之间的函数表达式;
(2)当 为多少时,超市每天销售这种玩具可获利润2250元?
(3)设超市每天销售这种玩具可获利 元,当 为多少时 最大,最大值是多少?
已知矩形 中, ,点 为对角线 上的一点,且 .如图①,动点 从点 出发,在矩形边上沿着 的方向匀速运动(不包含点 ).设动点 的运动时间为 , 的面积为 , 与 的函数关系如图②所示.
(1)直接写出动点 的运动速度为 , 的长度为 ;
(2)如图③,动点 重新从点 出发,在矩形边上按原来的速度和方向匀速运动,同时,另一个动点 从点 出发,在矩形边上沿着 的方向匀速运动,设动点 的运动速度为 .已知两动点 , 经过时间 在线段 上相遇(不包含点 ),动点 , 相遇后立即同时停止运动,记此时 与 的面积分别为 ,
①求动点 运动速度 的取值范围;
②试探究 是否存在最大值,若存在,求出 的最大值并确定运动时间 的值;若不存在,请说明理由.
草莓是云南多地盛产的一种水果,今年某水果销售店在草莓销售旺季,试销售成本为每千克20元的草莓,规定试销期间销售单价不低于成本单价,也不高于每千克40元,经试销发现,销售量 (千克)与销售单价 (元)符合一次函数关系,如图是 与 的函数关系图象.
(1)求 与 的函数解析式(也称关系式);
(2)设该水果销售店试销草莓获得的利润为 元,求 的最大值.
如图,在矩形 中, , , 是 上的一个动点 不与 , 重合),过点 的反比例函数 的图象与 边交于点 .
(1)当 为 的中点时,求该函数的解析式;
(2)当 为何值时, 的面积最大,最大面积是多少?
旅游公司在景区内配置了50辆观光车供游客租赁使用,假定每辆观光车一天内最多只能出租一次,且每辆车的日租金 (元)是5的倍数.发现每天的营运规律如下:当 不超过100元时,观光车能全部租出;当 超过100元时,每辆车的日租金每增加5元,租出去的观光车就会减少1辆.已知所有观光车每天的管理费是1100元.
(1)优惠活动期间,为使观光车全部租出且每天的净收入为正,则每辆车的日租金至少应为多少元?(注:净收入 租车收入 管理费)
(2)当每辆车的日租金为多少元时,每天的净收入最多?
已知:如图,在矩形 中, , ,对角线 , 交于点 .点 从点 出发,沿 方向匀速运动,速度为 ;同时,点 从点 出发,沿 方向匀速运动,速度为 ;当一个点停止运动时,另一个点也停止运动.连接 并延长,交 于点 ,过点 作 ,交 于点 .设运动时间为 ,解答下列问题:
(1)当 为何值时, 是等腰三角形?
(2)设五边形 的面积为 ,试确定 与 的函数关系式;
(3)在运动过程中,是否存在某一时刻 ,使 ?若存在,求出 的值;若不存在,请说明理由;
(4)在运动过程中,是否存在某一时刻 ,使 平分 ?若存在,求出 的值;若不存在,请说明理由.
如图,需在一面墙上绘制几个相同的抛物线型图案.按照图中的直角坐标系,最左边的抛物线可以用 表示.已知抛物线上 , 两点到地面的距离均为 ,到墙边 的距离分别为 , .
(1)求该拋物线的函数关系式,并求图案最高点到地面的距离;
(2)若该墙的长度为 ,则最多可以连续绘制几个这样的拋物线型图案?
在边长为2的等边三角形 中, 是 边上任意一点,过点 分别作 , , 、 分别为垂足.
(1)求证:不论点 在 边的何处时都有 的长恰好等于三角形 一边上的高;
(2)当 的长为何值时,四边形 的面积最大,并求出最大值.
在矩形 中, , ,动点 从点 出发,以每秒1个单位的速度,沿 向点 移动;同时点 从点 出发,仍以每秒1个单位的速度,沿 向点 移动,连接 , , .若两个点同时运动的时间为 秒 ,解答下列问题:
(1)设 的面积为 ,用含 的函数关系式表示 ;当 为何值时, 有最大值?并求出最小值;
(2)是否存在 的值,使得 ?试说明理由.
空地上有一段长为 米的旧墙 ,某人利用旧墙和木栏围成一个矩形菜园 ,已知木栏总长为100米.
(1)已知 ,矩形菜园的一边靠墙,另三边一共用了100米木栏,且围成的矩形菜园面积为450平方米.如图1,求所利用旧墙 的长;
(2)已知 ,且空地足够大,如图2.请你合理利用旧墙及所给木栏设计一个方案,使得所围成的矩形菜园 的面积最大,并求面积的最大值.
试题篮
()