发现规律
(1)如图①, 与 都是等边三角形,直线 , 交于点 .直线 , 交于点 .求 的度数.
(2)已知: 与 的位置如图②所示,直线 , 交于点 .直线 , 交于点 .若 , ,求 的度数.
应用结论
(3)如图③,在平面直角坐标系中,点 的坐标为 ,点 的坐标为 , 为 轴上一动点,连接 .将线段 绕点 逆时针旋转 得到线段 ,连接 , .求线段 长度的最小值.
如图,抛物线的顶点为 ,与 轴交于点 ,点 为其对称轴上的一个定点.
(1)求这条抛物线的函数解析式;
(2)已知直线 是过点 且垂直于 轴的定直线,若抛物线上的任意一点 到直线 的距离为 ,求证: ;
(3)已知坐标平面内的点 ,请在抛物线上找一点 ,使 的周长最小,并求此时 周长的最小值及点 的坐标.
在 中, , ,以 为边在 的另一侧作 ,点 为射线 上任意一点,在射线 上截取 ,连接 、 、 .
(1)如图1,当点 落在线段 的延长线上时,直接写出 的度数;
(2)如图2,当点 落在线段 (不含边界)上时, 与 交于点 ,请问(1)中的结论是否仍成立?如果成立,请给出证明;如果不成立,请说明理由;
(3)在(2)的条件下,若 ,求 的最大值.
小圆同学对图形旋转前后的线段之间、角之间的关系进行了拓展探究.
(一猜测探究
在中,,是平面内任意一点,将线段绕点按顺时针方向旋转与相等的角度,得到线段,连接.
(1)如图1,若是线段上的任意一点,请直接写出与的数量关系是 ,与的数量关系是 ;
(2)如图2,点是延长线上点,若是内部射线上任意一点,连接,(1)中结论是否仍然成立?若成立,请给予证明,若不成立,请说明理由.
(二拓展应用
如图3,在△中,,,,是上的任意点,连接,将绕点按顺时针方向旋转,得到线段,连接.求线段长度的最小值.
一辆货车在公路(直线CD)上由点C向点D方向行驶,村庄A、B分别位于道路CD的两侧,司机师傅要在公路上选择一个货物的下货点.
(1)请在CD上确定一个下货点E,使点E到村庄A的距离最近,画出图形并写出画图的依据;
(2)请在直线CD上确定一点O,使点O到村庄A、B的距离之和最小,画出图形并写出画图的依据.
如图,点P是线段AB上的一点.请在图中完成下列操作.
(1)过点P画BC的平行线,交线段AC于点M;
(2)过点P画BC的垂线,垂足为H;
(3)过点P画AB的垂线,交BC于Q;
(4)线段 的长度是点P到直线BC的距离.
根据下列条件画图,如图示点A、B、C分别代表三个村庄:
(1)画射线AC,画线段AB
(2)若线段AB是连结A村和B村的一条公路,现C村庄也要修一条公路与A、B两村庄之间的公路连通,为了减少修路开支,C村庄应该如何修路?请在同一图上用三角板画出示意图,并说明画图理由.
试题篮
()