优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 垂线段最短 / 解答题
初中数学

发现规律

(1)如图①, ΔABC ΔADE 都是等边三角形,直线 BD CE 交于点 F .直线 BD AC 交于点 H .求 BFC 的度数.

(2)已知: ΔABC ΔADE 的位置如图②所示,直线 BD CE 交于点 F .直线 BD AC 交于点 H .若 ABC = ADE = α ACB = AED = β ,求 BFC 的度数.

应用结论

(3)如图③,在平面直角坐标系中,点 O 的坐标为 ( 0 , 0 ) ,点 M 的坐标为 ( 3 , 0 ) N y 轴上一动点,连接 MN .将线段 MN 绕点 M 逆时针旋转 60 ° 得到线段 MK ,连接 NK OK .求线段 OK 长度的最小值.

来源:2020年山东省威海市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,抛物线的顶点为 A ( h , - 1 ) ,与 y 轴交于点 B ( 0 , - 1 2 ) ,点 F ( 2 , 1 ) 为其对称轴上的一个定点.

(1)求这条抛物线的函数解析式;

(2)已知直线 l 是过点 C ( 0 , - 3 ) 且垂直于 y 轴的定直线,若抛物线上的任意一点 P ( m , n ) 到直线 l 的距离为 d ,求证: PF = d

(3)已知坐标平面内的点 D ( 4 , 3 ) ,请在抛物线上找一点 Q ,使 ΔDFQ 的周长最小,并求此时 ΔDFQ 周长的最小值及点 Q 的坐标.

来源:2020年山东省滨州市中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学垂线段最短解答题