优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 全等三角形的判定与性质 / 解答题
初中数学

如图,在菱形 ABCD 中,过点 D DE AB 于点 E ,作 DF BC 于点 F ,连接 EF

求证:(1) ΔADE ΔCDF

(2) BEF = BFE

来源:2017年辽宁省沈阳市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,点 E F 分别是矩形 ABCD 的边 AD AB 上一点,若 AE = DC = 2 ED ,且 EF EC

(1)求证:点 F AB 的中点;

(2)延长 EF CB 的延长线相交于点 H ,连接 AH ,已知 ED = 2 ,求 AH 的值.

来源:2018年四川省德阳市中考数学试卷
  • 题型:未知
  • 难度:未知

如图1,在 Rt Δ ABC 中, ACB = 90 ° AC = BC ,点 D E 分别在 AC BC 边上, DC = EC ,连接 DE AE BD ,点 M N P 分别是 AE BD AB 的中点,连接 PM PN MN

(1) BE MN 的数量关系是  

(2)将 ΔDEC 绕点 C 逆时针旋转到如图2的位置,判断(1)中的结论是否仍然成立,如果成立,请写出证明过程,若不成立,请说明理由;

(3)若 CB = 6 CE = 2 ,在将图1中的 ΔDEC 绕点 C 逆时针旋转一周的过程中,当 B E D 三点在一条直线上时, MN 的长度为  

来源:2017年辽宁省辽阳市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在平行四边形 ABCD 中,对角线 AC BD 相交于点 O ,分别过点 A C AE BD CF BD ,垂足分别为 E F AC 平分 DAE

(1)若 AOE = 50 ° ,求 ACB 的度数;

(2)求证: AE = CF

来源:2020年重庆市中考数学试卷(a卷)
  • 题型:未知
  • 难度:未知

阅读理解:

我们把满足某种条件的所有点所组成的图形,叫做符合这个条件的点的轨迹.

例如:角的平分线是到角的两边距离相等的点的轨迹.

问题:如图1,已知 EF ΔABC 的中位线, M 是边 BC 上一动点,连接 AM EF 于点 P ,那么动点 P 为线段 AM 中点.

理由: 线段 EF ΔABC 的中位线, EF / / BC

由平行线分线段成比例得:动点 P 为线段 AM 中点.

由此你得到动点 P 的运动轨迹是:            

知识应用:

如图2,已知 EF 为等边 ΔABC AB AC 上的动点,连接 EF ;若 AF = BE ,且等边 ΔABC 的边长为8,求线段 EF 中点 Q 的运动轨迹的长.

拓展提高:

如图3, P 为线段 AB 上一动点(点 P 不与点 A B 重合),在线段 AB 的同侧分别作等边 ΔAPC 和等边 ΔPBD ,连接 AD BC ,交点为 Q

(1)求 AQB 的度数;

(2)若 AB = 6 ,求动点 Q 运动轨迹的长.

来源:2016年山东省日照市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AB = BC ,以 AB 为直径的 O BC 于点 D ,交 AC 于点 F ,过点 C CE / / AB ,与过点 A 的切线相交于点 E ,连接 AD

(1)求证: AD = AE

(2)若 AB = 6 AC = 4 ,求 AE 的长.

来源:2018年四川省巴中市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 ABCD 中, E F 是对角线 BD 上的两点(点 E 在点 F 左侧),且 AEB = CFD = 90 °

(1)求证:四边形 AECF 是平行四边形;

(2)当 AB = 5 tan ABE = 3 4 CBE = EAF 时,求 BD 的长.

来源:2021年浙江省温州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, MAN = 60 ° AP 平分 MAN ,点 B 是射线 AP 上一定点,点 C 在直线 AN 上运动,连接 BC ,将 ABC ( 0 ° < ABC < 120 ° ) 的两边射线 BC BA 分别绕点 B 顺时针旋转 120 ° ,旋转后角的两边分别与射线 AM 交于点 D 和点 E

(1)如图1,当点 C 在射线 AN 上时,

①请判断线段 BC BD 的数量关系,直接写出结论;

②请探究线段 AC AD BE 之间的数量关系,写出结论并证明;

(2)如图2,当点 C 在射线 AN 的反向延长线上时, BC 交射线 AM 于点 F ,若 AB = 4 AC = 3 ,请直接写出线段 AD DF 的长.

来源:2017年辽宁省葫芦岛市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, CA = CB BC A 相切于点 D ,过点 A AC 的垂线交 CB 的延长线于点 E ,交 A 于点 F ,连结 BF

(1)求证: BF A 的切线.

(2)若 BE = 5 AC = 20 ,求 EF 的长.

来源:2021年浙江省衢州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, ΔOAD 为等腰直角三角形,延长 OA 至点 B 使 OB = OD ABCD 是矩形,其对角线 AC BD 交于点 E ,连接 OE AD 于点 F

(1)求证: ΔOAF ΔDAB

(2)求 DF AF 的值.

来源:2021年四川省雅安市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, BD / / AC BD = BC ,点 E BC 上,且 BE = AC .求证: D = ABC

来源:2021年陕西省中考数学试卷
  • 题型:未知
  • 难度:未知

已知:如图,四边形 ABCD 为平行四边形,点 E A C F 在同一直线上, AE = CF

求证:(1) ΔADE ΔCBF

(2) ED / / BF

来源:2021年湖南省怀化市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,已知 AD = BC BD = AC .求证: ADB = BCA

来源:2020年云南省中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 ABCD 中,过 B 点作 BM AC 于点 E ,交 CD 于点 M ,过 D 点作 DN AC 于点 F ,交 AB 于点 N

(1)求证:四边形 BMDN 是平行四边形;

(2)已知 AF = 12 EM = 5 ,求 AN 的长.

来源:2018年四川省巴中市中考数学试卷
  • 题型:未知
  • 难度:未知

在菱形 ABCD 中,点 E 为对角线 BD 上一点,点 F G 在直线 BC 上,且 BE = EG AEF = BEG

(1)如图1,求证: ΔABE ΔFGE

(2)如图2,当 ABC = 120 ° 时,求证: AB = BE + BF

(3)如图3,当 ABC = 90 ° ,点 F 在线段 BC 上时,线段 AB BE BF 的数量关系如何?(请直接写出你猜想的结论)

来源:2017年辽宁省阜新市中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学全等三角形的判定与性质解答题