优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 全等三角形的判定与性质
初中数学

如图,在 Rt Δ ABC 中, ACB = 90 ° .线段 EF 是由线段 AB 平移得到的,点 F 在边 BC 上, ΔEFD 是以 EF 为斜边的等腰直角三角形,且点 D 恰好在 AC 的延长线上.

(1)求证: ADE = DFC

(2)求证: CD = BF

来源:2021年福建省中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, D 是边 BC 上的点, DE AC DF AB ,垂足分别为 E F ,且 DE = DF CE = BF .求证: B = C

来源:2021年福建省中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在矩形 ABCD 中, AB = 4 AD = 5 ,点 E F 分别是边 AB BC 上的动点,点 E 不与 A B 重合,且 EF = AB G 是五边形 AEFCD 内满足 GE = GF EGF = 90 ° 的点.现给出以下结论:

GEB GFB 一定互补;

②点 G 到边 AB BC 的距离一定相等;

③点 G 到边 AD DC 的距离可能相等;

④点 G 到边 AB 的距离的最大值为 2 2

其中正确的是        .(写出所有正确结论的序号)

来源:2021年福建省中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AB = AC BAC = α M BC 的中点,点 D MC 上,以点 A 为中心,将线段 AD 顺时针旋转 α 得到线段 AE ,连接 BE DE

(1)比较 BAE CAD 的大小;用等式表示线段 BE BM MD 之间的数量关系,并证明;

(2)过点 M AB 的垂线,交 DE 于点 N ,用等式表示线段 NE ND 的数量关系,并证明.

来源:2021年北京市中考数学试卷
  • 题型:未知
  • 难度:未知

ABC为等边三角形, AB 8 AD BC 于点DE为线段 AD 上一点, AE 2 3 .以AE为边在直线 AD 右侧构造等边三角形 AEF ,连接 CE N CE 的中点.

(1)如图1, EF AC 交于点G,连接 NG ,求线段 NG 的长;

(2)如图2,将 AEF 绕点A逆时针旋转,旋转角为α,M为线段EF的中点,连接 DN MN .当 30 ° α 120 ° 时,猜想∠DNM的大小是否为定值,并证明你的结论;

(3)连接BN,在 AEF 绕点A逆时针旋转过程中,当线段BN最大时,请直接写出 ADN 的面积.

来源:2020年重庆市中考数学试卷(b卷)
  • 题型:未知
  • 难度:未知

如图,在平行四边形 ABCD 中, AE CF 分别平分 BAD DCB ,交对角线 BD 于点EF

(1)若 BCF 60 ° ,求 ABC 的度数;

(2)求证: BE DF

来源:2020年重庆市中考数学试卷(b卷)
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,矩形 ABCD的顶点 AC分别在 x轴, y轴的正半轴上,点 D (﹣ 2 3 AD 5 ,若反比例函数 y = k x k 0 x 0 ) 的图象经过点 B,则 k的值为(  )

A.

16 3

B.

8

C.

10

D.

32 3

来源:2020年重庆市中考数学试卷(b卷)
  • 题型:未知
  • 难度:未知

如图,在 ABC 中, AC 2 2 ABC 45 ° BAC 15 ° ,将 ACB 沿直线 AC翻折至 ABC 所在的平面内,得 ACD .过点 A AE ,使 DAE DAC ,与 CD 的延长线交于点 E,连接 BE,则线段 BE的长为(  )

A.

6

B.

3

C.

2 3

D.

4

来源:2020年重庆市中考数学试卷(b卷)
  • 题型:未知
  • 难度:未知

如图,在 ABCD 中, DE AC 于点O,交BC于点E EG EC GF AD DE于点F,连接 FC ,点H为线段 AO 上一点,连接 HD HF

(1)判断四边形 GECF 的形状,并说明理由;

(2)当 DHF HAD 时,求证: AH CH EC AD

来源:2020年甘肃省兰州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 ABC 中, AB AC ,点DE分别是ACAB的中点.求证: BD CE

来源:2020年甘肃省兰州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在正方形ABCD中,对角线ACBD相交于点O AB 2 ,点EAB的延长线上,且 AE AC EF AC 于点F,连接BF并延长交CD于点G,则 DG   

来源:2020年甘肃省兰州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, ΔABC 内接于 O AD 平分 BAC BC 边于点 E ,交 O 于点 D ,过点 A AF BC 于点 F ,设 O 的半径为 R AF = h

(1)过点 D 作直线 MN / / BC ,求证: MN O 的切线;

(2)求证: AB · AC = 2 R · h

(3)设 BAC = 2 α ,求 AB + AC AD 的值(用含 α 的代数式表示).

来源:2020年山东省淄博市中考数学试卷
  • 题型:未知
  • 难度:未知

已知:如图, E ABCD 的边 BC 延长线上的一点,且 CE = BC

求证: ΔABC ΔDCE

来源:2020年山东省淄博市中考数学试卷
  • 题型:未知
  • 难度:未知

ΔABC 中, ACB = 90 ° CD 是中线, AC = BC ,一个以点 D 为顶点的 45 ° 角绕点 D 旋转,使角的两边分别与 AC BC 的延长线相交,交点分别为点 E F DF AC 交于点 M DE BC 交于点 N

(1)如图1,若 CE = CF ,求证: DE = DF

(2)如图2,在 EDF 绕点 D 旋转的过程中,试证明 C D 2 = CE · CF 恒成立;

(3)若 CD = 2 CF = 2 ,求 DN 的长.

来源:2020年山东省枣庄市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在等边三角形 ABC 中,点 E 是边 AC 上一定点,点 D 是直线 BC 上一动点,以 DE 为一边作等边三角形 DEF ,连接 CF

【问题解决】

如图1,若点 D 在边 BC 上,求证: CE + CF = CD

【类比探究】

如图2,若点 D 在边 BC 的延长线上,请探究线段 CE CF CD 之间存在怎样的数量关系?并说明理由.

来源:2020年山东省烟台市中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学全等三角形的判定与性质试题