优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 角平分线的性质 / 解答题
初中数学

如图,在 ΔABC 中, B = 40 ° C = 50 °

(1)通过观察尺规作图的痕迹,可以发现直线 DF 是线段 AB   ,射线 AE DAC   

(2)在(1)所作的图中,求 DAE 的度数.

来源:2021年湖北省宜昌市中考数学试卷
  • 题型:未知
  • 难度:未知

两个城镇 A B 与一条公路 CD ,一条河流 CE 的位置如图所示,某人要修建一避暑山庄,要求该山庄到 A B 的距离必须相等,到 CD CE 的距离也必须相等,且在 DCE 的内部,请画出该山庄的位置 P .(不要求写作法,保留作图痕迹. )

来源:2017年四川省自贡市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,已知 AOB = 60 ° ,在 AOB 的平分线 OM 上有一点 C ,将一个 120 ° 角的顶点与点 C 重合,它的两条边分别与直线 OA OB 相交于点 D E

(1)当 DCE 绕点 C 旋转到 CD OA 垂直时(如图 1 ) ,请猜想 OE + OD OC 的数量关系,并说明理由;

(2)当 DCE 绕点 C 旋转到 CD OA 不垂直时,到达图2的位置,(1)中的结论是否成立?并说明理由;

(3)当 DCE 绕点 C 旋转到 CD OA 的反向延长线相交时,上述结论是否成立?请在图3中画出图形,若成立,请给于证明;若不成立,线段 OD OE OC 之间又有怎样的数量关系?请写出你的猜想,不需证明.

来源:2018年四川省自贡市中考数学试卷
  • 题型:未知
  • 难度:未知

在矩形 ABCD CD 边上取一点 E ,将 ΔBCE 沿 BE 翻折,使点 C 恰好落在 AD 边上点 F 处.

(1)如图1,若 BC = 2 BA ,求 CBE 的度数;

(2)如图2,当 AB = 5 ,且 AF · FD = 10 时,求 BC 的长;

(3)如图3,延长 EF ,与 ABF 的角平分线交于点 M BM AD 于点 N ,当 NF = AN + FD 时,求 AB BC 的值.

来源:2020年四川省成都市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,四边形 ABCD 是菱形,点 H 为对角线 AC 的中点,点 E AB 的延长线上, CE AB ,垂足为 E ,点 F AD 的延长线上, CF AD ,垂足为 F

(1)若 BAD = 60 ° ,求证:四边形 CEHF 是菱形;

(2)若 CE = 4 ΔACE 的面积为16,求菱形 ABCD 的面积.

来源:2020年云南省中考数学试卷
  • 题型:未知
  • 难度:未知

如图,已知锐角 ΔABC 中, AC = BC

(1)请在图1中用无刻度的直尺和圆规作图:作 ACB 的平分线 CD ;作 ΔABC 的外接圆 O ;(不写作法,保留作图痕迹)

(2)在(1)的条件下,若 AB = 48 5 O 的半径为5,则 sin B =   .(如需画草图,请使用图 2 )

来源:2021年江苏省无锡市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,四边形 ABCD 是菱形,点 H 为对角线 AC 的中点,点 E AB 的延长线上, CE AB ,垂足为 E ,点 F AD 的延长线上, CF AD ,垂足为 F

(1)若 BAD = 60 ° ,求证:四边形 CEHF 是菱形;

(2)若 CE = 4 ΔACE 的面积为16,求菱形 ABCD 的面积.

来源:2020年云南省中考数学试卷
  • 题型:未知
  • 难度:未知

已知:如图, ABC ,射线 BC 上一点 D

求作:等腰 ΔPBD ,使线段 BD 为等腰 ΔPBD 的底边,点 P ABC 内部,且点 P ABC 两边的距离相等.

来源:2018年山东省青岛市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, AB O 的直径, AC 为弦, BA 的平分线交 O 于点 D ,过点 D 的切线交 AC 的延长线于点 E

求证:(1) DE AE

(2) AE + CE = AB

来源:2018年黑龙江省绥化市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, C = 90 °

(1)尺规作图:作 Rt Δ ABC 的外接圆 O ;作 ACB 的角平分线交 O 于点 D ,连接 AD .(不写作法,保留作图痕迹)

(2)若 AC = 6 BC = 8 ,求 AD 的长.

来源:2020年青海省中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中.

(1)利用尺规作图,在 BC 边上求作一点 P ,使得点 P AB 的距离 ( PD 的长)等于 PC 的长;

(2)利用尺规作图,作出(1)中的线段 PD

(要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑)

来源:2018年甘肃省兰州市中考数学试卷(a卷)
  • 题型:未知
  • 难度:未知

如图,在 ABCD 中, DC > AD ,四个角的平分线 AE DE BF CF 的交点分别是 E F ,过点 E F 分别作 DC AB 间的垂线 M M ' N N ' ,在 DC AB 上的垂足分别是 M N M ' N ' ,连接 EF

(1)求证:四边形 EFNM 是矩形;

(2)已知: AE = 4 DE = 3 DC = 9 ,求 EF 的长.

来源:2018年广西玉林市中考数学试卷
  • 题型:未知
  • 难度:未知

已知正方形 ABCD P 为射线 AB 上的一点,以 BP 为边作正方形 BPEF ,使点 F 在线段 CB 的延长线上,连接 EA EC

(1)如图1,若点 P 在线段 AB 的延长线上,求证: EA = EC

(2)如图2,若点 P 在线段 AB 的中点,连接 AC ,判断 ΔACE 的形状,并说明理由;

(3)如图3,若点 P 在线段 AB 上,连接 AC ,当 EP 平分 AEC 时,设 AB = a BP = b ,求 a : b AEC 的度数.

来源:2017年山东省枣庄市中考数学试卷
  • 题型:未知
  • 难度:未知

【发现】如图①,已知等边 ΔABC ,将直角三角板的 60 ° 角顶点 D 任意放在 BC 边上(点 D 不与点 B C 重合),使两边分别交线段 AB AC 于点 E F

(1)若 AB = 6 AE = 4 BD = 2 ,则 CF =   

(2)求证: ΔEBD ΔDCF

【思考】若将图①中的三角板的顶点 D BC 边上移动,保持三角板与边 AB AC 的两个交点 E F 都存在,连接 EF ,如图②所示,问:点 D 是否存在某一位置,使 ED 平分 BEF FD 平分 CFE ?若存在,求出 BD BC 的值;若不存在,请说明理由.

【探索】如图③,在等腰 ΔABC 中, AB = AC ,点 O BC 边的中点,将三角形透明纸板的一个顶点放在点 O 处(其中 MON = B ) ,使两条边分别交边 AB AC 于点 E F (点 E F 均不与 ΔABC 的顶点重合),连接 EF .设 B = α ,则 ΔAEF ΔABC 的周长之比为  (用含 α 的表达式表示).

来源:2018年江苏省盐城市中考数学试卷
  • 题型:未知
  • 难度:未知

已知:四边形 ABCD

求作:点 P ,使 PCB = B ,且点 P 到边 AD CD 的距离相等.

来源:2017年山东省青岛市中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学角平分线的性质解答题