如图,在中,
是
边上的高.请用尺规作图法在高
上求作一点
,使得点
到
的距离等于
的长.(保留作图痕迹,不写作法)
如图,在 中, .
(1)作 的平分线交 边于点 ,再以点 为圆心, 的长为半径作 ;(要求:不写做法,保留作图痕迹)
(2)判断(1)中 与 的位置关系,直接写出结果.
如图,已知锐角 中, .
(1)请在图1中用无刻度的直尺和圆规作图:作 的平分线 ;作 的外接圆 ;(不写作法,保留作图痕迹)
(2)在(1)的条件下,若 , 的半径为5,则 .(如需画草图,请使用图
如图,在平行四边形ABCD中,AB<BC.
(1)利用尺规作图,在BC边上确定点E,使点E到边AB,AD的距离相等(不写作法,保留作图痕迹);
(2)若BC=8,CD=5,则CE= .
如图,在 中, , 的平分线交 于点 , ,以点 为圆心 为半径作半圆.
(1)求证: 为 的切线;
(2)如果 ,求 的值.
两个城镇 , 与一条公路 ,一条河流 的位置如图所示,某人要修建一避暑山庄,要求该山庄到 , 的距离必须相等,到 和 的距离也必须相等,且在 的内部,请画出该山庄的位置 .(不要求写作法,保留作图痕迹.
如图,点 是等边三角形 外接圆上一点. 是 上一点,且满足 ,点 是 与 的交点.
(1)求证: ;
(2)如果 , .求线段 的长及 的面积.
如图,已知在△ABC中,∠A=90°,
(1)请用圆规和直尺作出⊙P,使圆心P在AC边上,且与AB,BC两边都相切(保留作图痕迹,不写作法和证明).
(2)若∠B=60°,AB=3,求⊙P的面积.
(年云南省)如图,在矩形ABCD中,AB=4,AD=6,M,N分别是AB,CD的中点,P是AD上的点,且∠PNB=3∠CBN.
(1)求证:∠PNM=2∠CBN;
(2)求线段AP的长.
如图,四边形 是菱形,点 为对角线 的中点,点 在 的延长线上, ,垂足为 ,点 在 的延长线上, ,垂足为 ,
(1)若 ,求证:四边形 是菱形;
(2)若 , 的面积为16,求菱形 的面积.
【发现】如图①,已知等边 ,将直角三角板的 角顶点 任意放在 边上(点 不与点 、 重合),使两边分别交线段 、 于点 、 .
(1)若 , , ,则 ;
(2)求证: .
【思考】若将图①中的三角板的顶点 在 边上移动,保持三角板与边 、 的两个交点 、 都存在,连接 ,如图②所示,问:点 是否存在某一位置,使 平分 且 平分 ?若存在,求出 的值;若不存在,请说明理由.
【探索】如图③,在等腰 中, ,点 为 边的中点,将三角形透明纸板的一个顶点放在点 处(其中 ,使两条边分别交边 、 于点 、 (点 、 均不与 的顶点重合),连接 .设 ,则 与 的周长之比为 (用含 的表达式表示).
试题篮
()