优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 等腰三角形的性质 / 解答题
初中数学

如图,四边形 ABCD 为平行四边形,连接 AC ,且 AC = 2 AB .请用尺规完成基本作图:作出 BAC 的角平分线与 BC 交于点 E .连接 BD AE 于点 F ,交 AC 于点 O ,猜想线段 BF 和线段 DF 的数量关系,并证明你的猜想.(尺规作图保留作图痕迹,不写作法)

来源:2021年重庆市中考数学试卷(B卷)
  • 题型:未知
  • 难度:未知

如图, BE ΔABC 的角平分线,在 AB 上取点 D ,使 DB = DE

(1)求证: DE / / BC

(2)若 A = 65 ° AED = 45 ° ,求 EBC 的度数.

来源:2021年浙江省温州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, A = 40 ° ,点 D E 分别在边 AB AC 上, BD = BC = CE ,连结 CD BE

(1)若 ABC = 80 ° ,求 BDC ABE 的度数;

(2)写出 BEC BDC 之间的关系,并说明理由.

来源:2021年浙江省绍兴市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AC = BC ,以 BC 为直径的半圆 O AB 于点 D ,过点 D 作半圆 O 的切线,交 AC 于点 E

(1)求证: ACB = 2 ADE

(2)若 DE = 3 AE = 3 ,求 CD ^ 的长.

来源:2021年浙江省丽水市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ AOB 中, AOB = 90 ° ,以点 O 为圆心, OA 为半径的圆交 AB 于点 C ,点 D 在边 OB 上,且 CD = BD

(1)判断直线 CD O 的位置关系,并说明理由;

(2)已知 tan ODC = 24 7 AB = 40 ,求 O 的半径.

来源:2021年江苏省宿迁市中考数学试卷
  • 题型:未知
  • 难度:未知

《淮南子 ? 天文训》中记载了一种确定东西方向的方法,大意是:日出时,在地面上点 A 处立一根杆,在地面上沿着杆的影子的方向取一点 B ,使 B A 两点间的距离为10步(步是古代的一种长度单位),在点 B 处立一根杆;日落时,在地面上沿着点 B 处的杆的影子的方向取一点 C ,使 C B 两点间的距离为10步,在点 C 处立一根杆.取 CA 的中点 D ,那么直线 DB 表示的方向为东西方向.

(1)上述方法中,杆在地面上的影子所在直线及点 A B C 的位置如图所示.使用直尺和圆规,在图中作 CA 的中点 D (保留作图痕迹);

(2)在如图中,确定了直线 DB 表示的方向为东西方向.根据南北方向与东西方向互相垂直,可以判断直线 CA 表示的方向为南北方向,完成如下证明.

证明:在 ΔABC 中, BA =     D CA 的中点,

CA DB (    ) (填推理的依据).

直线 DB 表示的方向为东西方向,

直线 CA 表示的方向为南北方向.

来源:2021年北京市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 ABC 中, AB AC ,点DE分别是ACAB的中点.求证: BD CE

来源:2020年甘肃省兰州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, ΔABC 的外角 BAM 的平分线与它的外接圆相交于点 E ,连接 BE CE ,过点 E EF / / BC ,交 CM 于点 D

求证:(1) BE = CE

(2) EF O 的切线.

来源:2020年山东省威海市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AB = BC ,以 ΔABC 的边 AB 为直径作 O ,交 AC 于点 D ,过点 D DE BC ,垂足为点 E

(1)试证明 DE O 的切线;

(2)若 O 的半径为5, AC = 6 10 ,求此时 DE 的长.

来源:2020年山东省聊城市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AB = AC ,点 P BC 上.

(1)求作: ΔPCD ,使点 D AC 上,且 ΔPCD ΔABP ;(要求:尺规作图,保留作图痕迹,不写作法)

(2)在(1)的条件下,若 APC = 2 ABC .求证: PD / / AB

来源:2020年山东省济宁市中考数学试卷
  • 题型:未知
  • 难度:未知

问题:如图,在 ΔABD 中, BA = BD .在 BD 的延长线上取点 E C ,作 ΔAEC ,使 EA = EC .若 BAE = 90 ° B = 45 ° ,求 DAC 的度数.

答案: DAC = 45 °

思考:(1)如果把以上“问题”中的条件“ B = 45 ° ”去掉,其余条件不变,那么 DAC 的度数会改变吗?说明理由.

(2)如果把以上“问题”中的条件“ B = 45 ° ”去掉,再将“ BAE = 90 ° ”改为“ BAE = n ° ”,其余条件不变,求 DAC 的度数.

来源:2020年浙江省绍兴市中考数学试卷
  • 题型:未知
  • 难度:未知

已知:如图,在 ΔOAB 中, OA = OB O AB 相切于点 C .求证: AC = BC .小明同学的证明过程如下框:

证明:连结 OC

OA = OB

A = B

OC = OC

ΔOAC ΔOBC

AC = BC

小明的证法是否正确?若正确,请在框内打“ ”;若错误,请写出你的证明过程.

来源:2020年浙江省嘉兴市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, AB 是半圆 O 的直径, C D 是半圆 O 上不同于 A B 的两点, AD = BC AC BD 相交于点 F BE 是半圆 O 所在圆的切线,与 AC 的延长线相交于点 E

(1)求证: ΔCBA ΔDAB

(2)若 BE = BF ,求证: AC 平分 DAB

来源:2020年安徽省中考数学试卷
  • 题型:未知
  • 难度:未知

综合与实践

问题情境:

如图①,点 E 为正方形 ABCD 内一点, AEB = 90 ° ,将 Rt Δ ABE 绕点 B 按顺时针方向旋转 90 ° ,得到 ΔCBE ' (点 A 的对应点为点 C ) .延长 AE CE ' 于点 F ,连接 DE

猜想证明:

(1)试判断四边形 B E ' FE 的形状,并说明理由;

(2)如图②,若 DA = DE ,请猜想线段 CF F E ' 的数量关系并加以证明;

解决问题:

(3)如图①,若 AB = 15 CF = 3 ,请直接写出 DE 的长.

来源:2020年山西省中考数学试卷
  • 题型:未知
  • 难度:未知

如图, Rt Δ ABC 中, ACB = 90 ° ,顶点 A B 都在反比例函数 y = k x ( x > 0 ) 的图象上,直线 AC x 轴,垂足为 D ,连结 OA OC ,并延长 OC AB 于点 E ,当 AB = 2 OA 时,点 E 恰为 AB 的中点,若 AOD = 45 ° OA = 2 2

(1)求反比例函数的解析式;

(2)求 EOD 的度数.

来源:2020年江西省中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学等腰三角形的性质解答题