已知抛物线经过点和点,与轴交于另一点,顶点为.
(1)求抛物线的解析式,并写出顶点的坐标;
(2)如图,点,分别在线段,上(点不与点,重合),且,,直接写出线段的长.
在 中, ,点 与点 在 同侧, ,且 ,过点 作 交 于点 , 为 的中点,连接 , .
(1)如图1,当 时,线段 与 的数量关系是 ;
(2)如图2,当 时,试探究线段 与 的数量关系,并证明你的结论;
(3)如图3,当 时,求 的值.
如图,抛物线 交 轴于点 ,交过点 且平行于 轴的直线于另一点 ,交 轴于 , 两点(点 在点 右边),对称轴为直线 ,连接 , , .若点 关于直线 的对称点恰好落在线段 上,下列结论中错误的是
A. |
点 坐标为 |
B. |
|
C. |
|
D. |
|
如图, 的斜边 与量角器的直径恰好重合, 点与0刻度线的一端重合, ,射线 绕点 转动,与量角器外沿交于点 ,若射线 将 分割出以 为边的等腰三角形,则点 在量角器上对应的度数是
A. B. C. 或 D. 或
如图是由边长为1的小正方形构成的网格,每个小正方形的顶点叫做格点.四边形的顶点在格点上,点是边与网格线的交点.请选择适当的格点,用无刻度的直尺在网格中完成下列画图,保留连线的痕迹,不要求说明理由.
(1)如图1,过点画线段,使,且.
(2)如图1,在边上画一点,使.
(3)如图2,过点画线段,使,且.
如图,是的直径,是上一点,过点作,交的延长线于,交于点,是的中点,连接.
(1)求证:是的切线.
(2)若,求证:.
中, , , ,过点 的直线把 分割成两个三角形,使其中只有一个是等腰三角形,则这个等腰三角形的面积是 .
在中,平分交于点.
(1)如图1,若,,求的面积;
(2)如图2,过点作,交的延长线于点,分别交,于点,,且.求证:.
如图1,在中,,,点为边上的动点(点不与点,重合).以为顶点作,射线交边于点,过点作交射线于点,连接.
(1)求证:;
(2)当时(如图,求的长;
(3)点在边上运动的过程中,是否存在某个位置,使得?若存在,求出此时的长;若不存在,请说明理由.
试题篮
()