已知: 在 中, , 为 的中点, , ,垂足分别为点 , ,且 . 求证: 是等边三角形 .
问题背景
如图1,在正方形 的内部,作 ,根据三角形全等的条件,易得 ,从而得到四边形 是正方形.
类比探究
如图2,在正 的内部,作 , , , 两两相交于 , , 三点 , , 三点不重合)
(1) , , 是否全等?如果是,请选择其中一对进行证明.
(2) 是否为正三角形?请说明理由.
(3)进一步探究发现, 的三边存在一定的等量关系,设 , , ,请探索 , , 满足的等量关系.
由6根钢管首尾顺次铰接而成六边形钢架 ,相邻两钢管可以转动.已知各钢管的长度为 米, 米.(铰接点长度忽略不计)
(1)转动钢管得到三角形钢架,如图1,则点 , 之间的距离是 米.
(2)转动钢管得到如图2所示的六边形钢架,有 ,现用三根钢条连接顶点使该钢架不能活动,则所用三根钢条总长度的最小值是 米.
如图,在边长为 正方形 中,把边 绕点 逆时针旋转 ,得到线段 ,连接 并延长交 于 ,连接 ,则 的面积为
A. B. C. D.
如图,点 为 的 边上的中点,点 为 的中点, 为正三角形,给出下列结论,① ,② ,③ ,④若 ,点 是 上一动点,点 到 、 边的距离分别为 , ,则 的最小值是3.其中正确的结论是 (填写正确结论的序号).
如图1,在平面直角坐标系, 为坐标原点,点 ,点 .
(1)求 的度数;
(2)如图1,将 绕点 顺时针旋转得△ ,当 恰好落在 边上时,设△ 的面积为 ,△ 的面积为 , 与 有何关系?为什么?
(3)若将 绕点 顺时针旋转到如图2所示的位置, 与 的关系发生变化了吗?证明你的判断.
如图,直角 中, ,点 是 的重心,连接 并延长交 于点 ,过点 作 交 于点 ,连接 交 于点 ,则 的值为
A. B. C. D.
如图, 为等边三角形 内的一点,且 到三个顶点 , , 的距离分别为3,4,5,则 的面积为
A. B. C. D.
如图,在正方形 中, ,把边 绕点 逆时针旋转 得到线段 ,连接 并延长交 于点 ,连接 ,则三角形 的面积为 .
如图,木工师傅在板材边角处作直角时,往往使用“三弧法”,其作法是:
(1)作线段 ,分别以 , 为圆心,以 长为半径作弧,两弧的交点为 ;
(2)以 为圆心,仍以 长为半径作弧交 的延长线于点 ;
(3)连接 , .
下列说法不正确的是
A. B.
C.点 是 的外心D.
如图,已知 ,点 , 分别在 , 上,且 ,将射线 绕点 逆时针旋转得到 ,旋转角为 且 ,作点 关于直线 的对称点 ,画直线 交 于点 ,连接 , ,有下列结论:
① ;
② 的大小随着 的变化而变化;
③当 时,四边形 为菱形;
④ 面积的最大值为 ;
其中正确的是 .(把你认为正确结论的序号都填上).
试题篮
()