优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 含30度角的直角三角形
初中数学

图1是一种矩形时钟,图2是时钟示意图,时钟数字2的刻度在矩形 ABCD 的对角线 BD 上,时钟中心在矩形 ABCD 对角线的交点 O 上.若 AB = 30 cm ,则 BC 长为    cm (结果保留根号).

来源:2021年浙江省绍兴市中考数学试卷
  • 题型:未知
  • 难度:未知

如图是一张矩形纸片 ABCD ,点 M 是对角线 AC 的中点,点 E BC 边上,把 ΔDCE 沿直线 DE 折叠,使点 C 落在对角线 AC 上的点 F 处,连接 DF EF .若 MF = AB ,则 DAF =   度.

来源:2021年浙江省杭州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, EF AB BC CD 分别交于点 E G F ,且 1 = 2 = 30 ° EF AB ,则下列结论错误的是 (    )

A.

AB / / CD

B.

3 = 60 °

C.

FG = 1 2 FC

D.

GF CD

来源:2021年辽宁省营口市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 ABCD 中,点 E AD 上,且 EC 平分 BED ,若 EBC = 30 ° BE = 10 ,则 ABCD 的面积为   

来源:2021年江苏省扬州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, ACB = 90 ° CBA = 30 ° AC = 1 D AB 上一点(点 D 与点 A 不重合).若在 Rt Δ ABC 的直角边上存在4个不同的点分别和点 A D 成为直角三角形的三个顶点,则 AD 长的取值范围是   

来源:2021年江苏省常州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图①,在 Rt Δ ABC 中, ACB = 90 ° A = 60 ° CD 是斜边 AB 上的中线,点 E 为射线 BC 上一点,将 ΔBDE 沿 DE 折叠,点 B 的对应点为点 F

(1)若 AB = a .直接写出 CD 的长(用含 a 的代数式表示);

(2)若 DF BC ,垂足为 G ,点 F 与点 D 在直线 CE 的异侧,连接 CF ,如②,判断四边形 ADFC 的形状,并说明理由;

(3)若 DF AB ,直接写出 BDE 的度数.

来源:2021年吉林省中考数学试卷
  • 题型:未知
  • 难度:未知

将一物体(视为边长为 2 π 米的正方形 ABCD ) 从地面 PQ 上挪到货车车厢内.如图所示,刚开始点 B 与斜面 EF 上的点 E 重合,先将该物体绕点 B (E)按逆时针方向旋转至正方形 A 1 B C 1 D 1 的位置,再将其沿 EF 方向平移至正方形 A 2 B 2 C 2 D 2 的位置(此时点 B 2 与点 G 重合),最后将物体移到车厢平台面 MG 上.已知 MG / / PQ FBP = 30 ° ,过点 F FH MG 于点 H FH = 1 3 米, EF = 4 米.

(1)求线段 FG 的长度;

(2)求在此过程中点 A 运动至点 A 2 所经过的路程.

来源:2021年湖南省株洲市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, ACB = 90 ° A = 60 ° ,点 D AB 的中点,连接 CD ,将线段 CD 绕点 D 顺时针旋转 α ( 60 ° < α < 120 ° ) 得到线段 ED ,且 ED 交线段 BC 于点 G CDE 的平分线 DM BC 于点 H

(1)如图1,若 α = 90 ° ,则线段 ED BD 的数量关系是    GD CD =   

(2)如图2,在(1)的条件下,过点 C CF / / DE DM 于点 F ,连接 EF BE

①试判断四边形 CDEF 的形状,并说明理由;

②求证: BE FH = 3 3

(3)如图3,若 AC = 2 tan ( α - 60 ° ) = m ,过点 C CF / / DE DM 于点 F ,连接 EF BE ,请直接写出 BE FH 的值(用含 m 的式子表示).

来源:2021年湖南省岳阳市中考数学试卷
  • 题型:未知
  • 难度:未知

Rt Δ ABC 中, C = 90 ° B = 30 ° ,以顶点 A 为圆心,适当长为半径画弧,分别交 AC AB 于点 E F ;再分别以点 E F 为圆心,大于 1 2 EF 的长为半径画弧,两弧交于点 P ,作射线 AP BC 于点 D .则 CD BD 的数量关系是  

来源:2021年湖北省黄冈市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, ΔABC O 的内接三角形, AB = BC BAC = 30 ° AD 是直径, AD = 8 ,则 AC 的长为 (    )

A.

4

B.

4 3

C.

8 3 3

D.

2 3

来源:2020年山东省泰安市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在菱形 ABCD 中, AB = AC ,点 E F G 分别在边 BC CD 上, BE = CG AF 平分 EAG ,点 H 是线段 AF 上一动点(与点 A 不重合).

(1)求证: ΔAEH ΔAGH

(2)当 AB = 12 BE = 4 时.

ΔDGH 周长的最小值;

②若点 O AC 的中点,是否存在直线 OH ΔACE 分成三角形和四边形两部分,其中三角形的面积与四边形的面积比为 1 : 3 .若存在,请求出 AH AF 的值;若不存在,请说明理由.

来源:2020年山东省济宁市中考数学试卷
  • 题型:未知
  • 难度:未知

四边形具有不稳定性,对于四条边长确定的四边形.当内角度数发生变化时,其形状也会随之改变.如图,改变正方形 ABCD 的内角,正方形 ABCD 变为菱形 ABC ' D ' .若 D ' AB = 30 ° ,则菱形 ABC ' D ' 的面积与正方形 ABCD 的面积之比是 (    )

A.1B. 1 2 C. 2 2 D. 3 2

来源:2020年浙江省湖州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, C = 90 ° ABC = 30 ° AC = 1 cm ,将 Rt Δ ABC 绕点 A 逆时针旋转得到 Rt A B ' C ' ,使点 C ' 落在 AB 边上,连接 B B ' ,则 B B ' 的长度是 (    )

A. 1 cm B. 2 cm C. 3 cm D. 2 3 cm

来源:2020年海南省中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AB = BC = 3 BAC = 30 ° ,分别以点 A C 为圆心, AC 的长为半径作弧,两弧交于点 D ,连接 DA DC ,则四边形 ABCD 的面积为 (    )

A. 6 3 B.9C.6D. 3 3

来源:2020年河南省中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在矩形 ABCD 中,对角线 AC BD 相交于点 O ,已知 BOC = 120 ° DC = 3 cm ,则 AC 的长为   cm

来源:2020年青海省中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学含30度角的直角三角形试题