优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 正方形的判定与性质 / 解答题
初中数学

如图,点 E 为正方形 ABCD 外一点, AEB = 90 ° ,将 Rt Δ ABE A 点逆时针方向旋转 90 ° 得到 ΔADF DF 的延长线交 BE H 点.

(1)试判定四边形 AFHE 的形状,并说明理由;

(2)已知 BH = 7 BC = 13 ,求 DH 的长.

来源:2021年湖南省衡阳市中考数学试卷
  • 题型:未知
  • 难度:未知

综合与实践

问题情境:

如图①,点 E 为正方形 ABCD 内一点, AEB = 90 ° ,将 Rt Δ ABE 绕点 B 按顺时针方向旋转 90 ° ,得到 ΔCBE ' (点 A 的对应点为点 C ) .延长 AE CE ' 于点 F ,连接 DE

猜想证明:

(1)试判断四边形 B E ' FE 的形状,并说明理由;

(2)如图②,若 DA = DE ,请猜想线段 CF F E ' 的数量关系并加以证明;

解决问题:

(3)如图①,若 AB = 15 CF = 3 ,请直接写出 DE 的长.

来源:2020年山西省中考数学试卷
  • 题型:未知
  • 难度:未知

如图, ΔABC O 的内接三角形, BAC = 75 ° ABC = 45 ° .连接 AO 并延长,交 O 于点 D ,连接 BD .过点 C O 的切线,与 BA 的延长线相交于点 E

(1)求证: AD / / EC

(2)若 AB = 12 ,求线段 EC 的长.

来源:2020年陕西省中考数学试卷
  • 题型:未知
  • 难度:未知

定义:有一组邻边相等,并且它们的夹角是直角的凸四边形叫做等腰直角四边形.

(1)如图1,等腰直角四边形 ABCD AB = BC ABC = 90 °

①若 AB = CD = 1 AB / / CD ,求对角线 BD 的长.

②若 AC BD ,求证: AD = CD

(2)如图2,在矩形 ABCD 中, AB = 5 BC = 9 ,点 P 是对角线 BD 上一点,且 BP = 2 PD ,过点 P 作直线分别交边 AD BC 于点 E F ,使四边形 ABFE 是等腰直角四边形,求 AE 的长.

来源:2017年浙江省金华市义乌市(绍兴市)中考数学试卷
  • 题型:未知
  • 难度:未知

如图, AB O 的直径,点 D O 上(点 D 不与 A B 重合),直线 AD 交过点 B 的切线于点 C ,过点 D O 的切线 DE BC 于点 E

(1)求证: BE = CE

(2)若 DE / / AB ,求 sin ACO 的值.

来源:2018年四川省绵阳市中考数学试卷
  • 题型:未知
  • 难度:未知

问题情境:

在综合与实践课上,老师让同学们以“矩形纸片的剪拼”为主题开展数学活动.如图1,将:矩形纸片 ABCD 沿对角线 AC 剪开,得到 ΔABC ΔACD .并且量得 AB = 2 cm AC = 4 cm

操作发现:

(1)将图1中的 ΔACD 以点 A 为旋转中心,按逆时针方向旋转 α ,使 α = BAC ,得到如图2所示的△ AC ' D ,过点 C AC ' 的平行线,与 D C ' 的延长线交于点 E ,则四边形 ACEC ' 的形状是  

(2)创新小组将图1中的 ΔACD 以点 A 为旋转中心,按逆时针方向旋转,使 B A D 三点在同一条直线上,得到如图3所示的△ AC ' D ,连接 C C ' ,取 CC ' 的中点 F ,连接 AF 并延长至点 G ,使 FG = AF ,连接 CG C ' G ,得到四边形 ACGC ' ,发现它是正方形,请你证明这个结论.

实践探究:

(3)缜密小组在创新小组发现结论的基础上,进行如下操作:将 ΔABC 沿着 BD 方向平移,使点 B 与点 A 重合,此时 A 点平移至 A ' 点, A ' C BC ' 相交于点 H ,如图4所示,连接 CC ' ,试求 tan C ' CH 的值.

来源:2018年山东省菏泽市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,四边形 ABCD 是矩形 ( AB < BC ) ,要在矩形 ABCD 内作一个以 AB 为边的正方形 ABEF ,某位同学的作法如下:

①作 ABC 的平分线 BM BM AD 于点 F

②以点 B 为圆心, BA 长为半径画弧,交 BC 于点 E ,连接 EF

(1)求证:四边形 ABEF 是正方形;

(2)若 AB = 5 ,求图中阴影部分的面积.

来源:2016年辽宁省盘锦市中考数学试卷
  • 题型:未知
  • 难度:未知

如图1,在四边形 ABCD 中,如果对角线 AC BD 相交并且相等,那么我们把这样的四边形称为等角线四边形.

(1)①在“平行四边形、矩形、菱形”中,      一定是等角线四边形(填写图形名称);

②若 M N P Q 分别是等角线四边形 ABCD 四边 AB BC CD DA 的中点,当对角线 AC BD 还要满足  时,四边形 MNPQ 是正方形.

(2)如图2,已知 ΔABC 中, ABC = 90 ° AB = 4 BC = 3 D 为平面内一点.

①若四边形 ABCD 是等角线四边形,且 AD = BD ,则四边形 ABCD 的面积是   

②设点 E 是以 C 为圆心,1为半径的圆上的动点,若四边形 ABED 是等角线四边形,写出四边形 ABED 面积的最大值,并说明理由.

来源:2017年江苏省常州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在等腰直角三角形 ABC 中, ACB = 90 ° AC = BC = 4 D AB 的中点, E F 分别是 AC BC 上的点(点 E 不与端点 A C 重合),且 AE = CF ,连接 EF 并取 EF 的中点 O ,连接 DO 并延长至点 G ,使 GO = OD ,连接 DE DF GE GF

(1)求证:四边形 EDFG 是正方形;

(2)当点 E 在什么位置时,四边形 EDFG 的面积最小?并求四边形 EDFG 面积的最小值.

来源:2017年广西玉林市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在正方形 ABCD 中, H CD 的中点,延长 AH F ,使 AH = 3 FH ,过 F FG CD ,垂足为 G ,过 F BC 的垂线交 BC 的延长线于点 E

(1)求证: ΔADH ΔFGH

(2)求证:四边形 CEFG 是正方形.

来源:2017年广西来宾市中考数学试卷
  • 题型:未知
  • 难度:未知

已知矩形 ABCD 中, E AD 边上的一个动点,点 F G H 分别是 BC BE CE 的中点.

(1)求证: ΔBGF ΔFHC

(2)设 AD = a ,当四边形 EGFH 是正方形时,求矩形 ABCD 的面积.

来源:2018年甘肃省金昌市中考数学试卷
  • 题型:未知
  • 难度:未知

在△ABC中, AB 6 AC 8 BC 10 D是△ABC内部或BC边上的一个动点(与BC不重合),以D为顶点作△DEF,使△DEF∽△ABC(相似比k>1),EFBC

(1)求∠D的度数;

(2)若两三角形重叠部分的形状始终是四边形AGDH

①如图1,连接GHAD,当 GH AD 时,请判断四边形AGDH的形状,并证明;

②当AGDH的面积最大时,过A AP EF P,且 AP AD ,求k的值.

来源:2016年湖北省宜昌市中考数学试卷
  • 题型:未知
  • 难度:未知

【教材呈现】如图是华师版八年级下册数学教材第121页的部分内容.

1.把一张矩形纸片如图那样折一下,就可以裁出正方形纸片,为什么?

【问题解决】如图①,已知矩形纸片 ABCD ( AB > AD ) ,将矩形纸片沿过点 D 的直线折叠,使点 A 落在边 DC 上,点 A 的对应点为 A ' ,折痕为 DE ,点 E AB 上.求证:四边形 AEA ' D 是正方形.

【规律探索】由【问题解决】可知,图①中的△ A ' DE 为等腰三角形.现将图①中的点 A ' 沿 DC 向右平移至点 Q 处(点 Q 在点 C 的左侧),如图②,折痕为 PF ,点 F DC 上,点 P AB 上,那么 ΔPQF 还是等腰三角形吗?请说明理由.

[结论应用]在图②中,当 QC = QP 时,将矩形纸片继续折叠如图③,使点 C 与点 P 重合,折痕为 QG ,点 G AB 上.要使四边形 PGQF 为菱形,则 AD AB =    

来源:2020年吉林省长春市中考数学试卷
  • 题型:未知
  • 难度:未知

菱形 ABCD 的对角线 AC BD 相交于点 O 0 ° < ABO 60 ° ,点 G 是射线 OD 上一个动点,过点 G GE / / DC 交射线 OC 于点 E ,以 OE OG 为邻边作矩形 EOGF

(1)如图1,当点 F 在线段 DC 上时,求证: DF = FC

(2)若延长 AD 与边 GF 交于点 H ,将 ΔGDH 沿直线 AD 翻折 180 ° 得到 ΔMDH

①如图2,当点 M EG 上时,求证:四边形 EOGF 为正方形;

②如图3,当 tan ABO 为定值 m 时,设 DG = k · DO k 为大于0的常数,当且仅当 k > 2 时,点 M 在矩形 EOGF 的外部,求 m 的值.

来源:2020年湖北省宜昌市中考数学试卷
  • 题型:未知
  • 难度:未知

小波在复习时,遇到一个课本上的问题,温故后进行了操作、推理与拓展.

(1)温故:如图1,在中,于点,正方形的边上,顶点分别在上,若,求正方形的边长.

(2)操作:能画出这类正方形吗?小波按数学家波利亚在《怎样解题》中的方法进行操作:如图2,任意画,在上任取一点,画正方形,使边上,内,连结并延长交于点,画于点于点于点,得到四边形.小波把线段称为“波利亚线”.

(3)推理:证明图2中的四边形是正方形.

(4)拓展:在(2)的条件下,在射线上截取,连结(如图.当时,猜想的度数,并尝试证明.

请帮助小波解决“温故”、“推理”、“拓展”中的问题.

来源:2019年浙江省嘉兴市中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学正方形的判定与性质解答题