优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 四边形综合题 / 解答题
初中数学

Rt Δ ABC 中, ACB = 90 ° AB = 7 AC = 2 ,过点 B 作直线 m / / AC ,将 ΔABC 绕点 C 顺时针旋转得到△ A ' B ' C (点 A B 的对应点分别为 A ' B ' ) ,射线 CA ' CB ' 分别交直线 m 于点 P Q

(1)如图1,当 P A ' 重合时,求 ACA ' 的度数;

(2)如图2,设 A ' B ' BC 的交点为 M ,当 M A ' B ' 的中点时,求线段 PQ 的长;

(3)在旋转过程中,当点 P Q 分别在 CA ' CB ' 的延长线上时,试探究四边形 P A ' B ' Q 的面积是否存在最小值.若存在,求出四边形 PA ' B ' Q 的最小面积;若不存在,请说明理由.

来源:2018年四川省成都市中考数学试卷
  • 题型:未知
  • 难度:未知

如图1,以 ABCD 的较短边 CD 为一边作菱形 CDEF ,使点 F 落在边 AD 上,连接 BE ,交 AF 于点 G

(1)猜想 BG EG 的数量关系,并说明理由;

(2)延长 DE BA 交于点 H ,其他条件不变:

①如图2,若 ADC = 60 ° ,求 DG BH 的值;

②如图3,若 ADC = α ( 0 ° < α < 90 ° ) ,直接写出 DG BH 的值(用含 α 的三角函数表示)

来源:2018年辽宁省锦州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,正方形 ABCD 中, AB = 2 5 O BC 边的中点,点 E 是正方形内一动点, OE = 2 ,连接 DE ,将线段 DE 绕点 D 逆时针旋转 90 ° DF ,连接 AE CF

(1)求证: AE = CF

(2)若 A E O 三点共线,连接 OF ,求线段 OF 的长.

(3)求线段 OF 长的最小值.

来源:2018年江苏省南通市中考数学试卷
  • 题型:未知
  • 难度:未知

已知四边形ABCD是菱形,AB=4,∠ABC=60°,∠EAF的两边分别与射线CBDC相交于点EF,且∠EAF=60°.

(1)如图1,当点E是线段CB的中点时,直接写出线段AEEFAF之间的数量关系;

(2)如图2,当点E是线段CB上任意一点时(点E不与BC重合),求证:BECF

(3)如图3,当点E在线段CB的延长线上,且∠EAB=15°时,求点FBC的距离.

来源:2016年广西南宁市中考数学试卷
  • 题型:未知
  • 难度:未知

已知:如图,四边形中,是对角线上一点,且

(1)求证:四边形是菱形;

(2)如果,且,求证:四边形是正方形.

来源:2017年上海市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在正方形ABCD中,点E(与点BC不重合)是BC边上一点,将线段EA绕点E顺时针旋转90°到EF,过点FBC的垂线交BC的延长线于点G,连接CF

(1)求证:△ABE≌△EGF

(2)若AB=2,SABE=2SECF,求BE

来源:2016年广西来宾市中考数学试卷
  • 题型:未知
  • 难度:未知

定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线.

(1)如图1,在中,的角平分线,分别是上的点.

求证:四边形是邻余四边形.

(2)如图2,在的方格纸中,在格点上,请画出一个符合条件的邻余四边形,使是邻余线,在格点上.

(3)如图3,在(1)的条件下,取中点,连结并延长交于点,延长于点.若的中点,,求邻余线的长.

来源:2019年浙江省宁波市中考数学试卷
  • 题型:未知
  • 难度:未知

在平面直角坐标系中,为原点,点,点轴的正半轴上,.矩形的顶点分别在上,

(Ⅰ)如图①,求点的坐标;

(Ⅱ)将矩形沿轴向右平移,得到矩形,点的对应点分别为.设,矩形重叠部分的面积为

①如图②,当矩形重叠部分为五边形时,分别与相交于点,试用含有的式子表示,并直接写出的取值范围;

②当时,求的取值范围(直接写出结果即可).

来源:2019年天津市中考数学试卷
  • 题型:未知
  • 难度:未知

在正方形中,是边上一点(点不与点重合),连结

【感知】如图①,过点于点.易证.(不需要证明)

【探究】如图②,取的中点,过点于点,交于点

(1)求证:

(2)连结,若,则的长为  

【应用】如图③,取的中点,连结.过点于点,连结.若,则四边形的面积为  

来源:2018年吉林省长春市中考数学试卷
  • 题型:未知
  • 难度:未知

性质探究

如图①,在等腰三角形中,,则底边与腰的长度之比为  

理解运用

(1)若顶角为的等腰三角形的周长为,则它的面积为  

(2)如图②,在四边形中,

①求证:

②在边上分别取中点,连接.若,直接写出线段的长.

类比拓展

顶角为的等腰三角形的底边与一腰的长度之比为  (用含的式子表示).

来源:2019年吉林省中考数学试卷
  • 题型:未知
  • 难度:未知

【感知】如图①,在四边形 ABCD 中, C = D = 90 ° ,点 E 在边 CD 上, AEB = 90 ° ,求证: AE EB = DE CB

【探究】如图②,在四边形 ABCD 中, C = ADC = 90 ° ,点 E 在边 CD 上,点 F 在边 AD 的延长线上, FEG = AEB = 90 ° ,且 EF EG = AE EB ,连接 BG CD 于点 H

求证: BH = GH

【拓展】如图③,点 E 在四边形 ABCD 内, AEB DEC = 180 ° ,且 AE EB = DE EC ,过 E EF AD 于点 F ,若 EFA = AEB ,延长 FE BC 于点 G .求证: BG = CG

来源:2020年江苏省宿迁市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,正方形 ABCD 和正方形 CEFG (其中 BD > 2 CE ) BG 的延长线与直线 DE 交于点 H

(1)如图1,当点 G CD 上时,求证: BG = DE BG DE

(2)将正方形 CEFG 绕点 C 旋转一周.

①如图2,当点 E 在直线 CD 右侧时,求证: BH - DH = 2 CH

②当 DEC = 45 ° 时,若 AB = 3 CE = 1 ,请直接写出线段 DH 的长.

来源:2020年辽宁省阜新市中考数学试卷
  • 题型:未知
  • 难度:未知

中心为 O 的正六边形 ABCDEF 的半径为 6 cm ,点 P Q 同时分别从 A D 两点出发,以 1 cm / s 的速度沿 AF DC 向终点 F C 运动,连接 PB PE QB QE ,设运动时间为 t ( s )

(1)求证:四边形 PBQE 为平行四边形;

(2)求矩形 PBQE 的面积与正六边形 ABCDEF 的面积之比.

来源:2020年内蒙古通辽市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,矩形 的对角线 相交于点 关于 的对称图形为

(1)求证:四边形 是菱形;

(2)连接 ,若

①求 的值;

②若点 为线段 上一动点(不与点 重合),连接 ,一动点 从点 出发,以 的速度沿线段 匀速运动到点 ,再以 的速度沿线段 匀速运动到点 ,到达点 后停止运动,当点 沿上述路线运动到点 所需要的时间最短时,求 的长和点 走完全程所需的时间.

来源:2017年广东省广州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,四边形 ABCD 是菱形, BAD = 120 ° ,点 E 在射线 AC 上(不包括点 A 和点 C ) ,过点 E 的直线 GH 交直线 AD 于点 G ,交直线 BC 于点 H ,且 GH / / DC ,点 F BC 的延长线上, CF = AG ,连接 ED EF DF

(1)如图1,当点 E 在线段 AC 上时,

①判断 ΔAEG 的形状,并说明理由.

②求证: ΔDEF 是等边三角形.

(2)如图2,当点 E AC 的延长线上时, ΔDEF 是等边三角形吗?如果是,请证明你的结论;如果不是,请说明理由.

来源:2019年辽宁省盘锦市中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学四边形综合题解答题