在 中, , , ,过点 作直线 ,将 绕点 顺时针旋转得到△ (点 , 的对应点分别为 , ,射线 , 分别交直线 于点 , .
(1)如图1,当 与 重合时,求 的度数;
(2)如图2,设 与 的交点为 ,当 为 的中点时,求线段 的长;
(3)在旋转过程中,当点 , 分别在 , 的延长线上时,试探究四边形 的面积是否存在最小值.若存在,求出四边形 的最小面积;若不存在,请说明理由.
如图1,以 的较短边 为一边作菱形 ,使点 落在边 上,连接 ,交 于点 .
(1)猜想 与 的数量关系,并说明理由;
(2)延长 、 交于点 ,其他条件不变:
①如图2,若 ,求 的值;
②如图3,若 ,直接写出 的值(用含 的三角函数表示)
如图,正方形 中, , 是 边的中点,点 是正方形内一动点, ,连接 ,将线段 绕点 逆时针旋转 得 ,连接 , .
(1)求证: ;
(2)若 , , 三点共线,连接 ,求线段 的长.
(3)求线段 长的最小值.
已知四边形ABCD是菱形,AB=4,∠ABC=60°,∠EAF的两边分别与射线CB,DC相交于点E,F,且∠EAF=60°.
(1)如图1,当点E是线段CB的中点时,直接写出线段AE,EF,AF之间的数量关系;
(2)如图2,当点E是线段CB上任意一点时(点E不与B、C重合),求证:BE=CF;
(3)如图3,当点E在线段CB的延长线上,且∠EAB=15°时,求点F到BC的距离.
已知:如图,四边形中,,,是对角线上一点,且.
(1)求证:四边形是菱形;
(2)如果,且,求证:四边形是正方形.
如图,在正方形ABCD中,点E(与点B、C不重合)是BC边上一点,将线段EA绕点E顺时针旋转90°到EF,过点F作BC的垂线交BC的延长线于点G,连接CF.
(1)求证:△ABE≌△EGF;
(2)若AB=2,S△ABE=2S△ECF,求BE.
定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线.
(1)如图1,在中,,是的角平分线,,分别是,上的点.
求证:四边形是邻余四边形.
(2)如图2,在的方格纸中,,在格点上,请画出一个符合条件的邻余四边形,使是邻余线,,在格点上.
(3)如图3,在(1)的条件下,取中点,连结并延长交于点,延长交于点.若为的中点,,,求邻余线的长.
在平面直角坐标系中,为原点,点,点在轴的正半轴上,.矩形的顶点,,分别在,,上,.
(Ⅰ)如图①,求点的坐标;
(Ⅱ)将矩形沿轴向右平移,得到矩形,点,,,的对应点分别为,,,.设,矩形与重叠部分的面积为.
①如图②,当矩形与重叠部分为五边形时,,分别与相交于点,,试用含有的式子表示,并直接写出的取值范围;
②当时,求的取值范围(直接写出结果即可).
在正方形中,是边上一点(点不与点、重合),连结.
【感知】如图①,过点作交于点.易证.(不需要证明)
【探究】如图②,取的中点,过点作交于点,交于点.
(1)求证:.
(2)连结,若,则的长为 .
【应用】如图③,取的中点,连结.过点作交于点,连结、.若,则四边形的面积为 .
性质探究
如图①,在等腰三角形中,,则底边与腰的长度之比为 .
理解运用
(1)若顶角为的等腰三角形的周长为,则它的面积为 ;
(2)如图②,在四边形中,.
①求证:;
②在边,上分别取中点,,连接.若,,直接写出线段的长.
类比拓展
顶角为的等腰三角形的底边与一腰的长度之比为 (用含的式子表示).
【感知】如图①,在四边形 中, ,点 在边 上, ,求证: .
【探究】如图②,在四边形 中, ,点 在边 上,点 在边 的延长线上, ,且 ,连接 交 于点 .
求证: .
【拓展】如图③,点 在四边形 内, 十 ,且 ,过 作 交 于点 ,若 ,延长 交 于点 .求证: .
如图,正方形 和正方形 (其中 , 的延长线与直线 交于点 .
(1)如图1,当点 在 上时,求证: , ;
(2)将正方形 绕点 旋转一周.
①如图2,当点 在直线 右侧时,求证: ;
②当 时,若 , ,请直接写出线段 的长.
中心为 的正六边形 的半径为 ,点 , 同时分别从 , 两点出发,以 的速度沿 , 向终点 , 运动,连接 , , , ,设运动时间为 .
(1)求证:四边形 为平行四边形;
(2)求矩形 的面积与正六边形 的面积之比.
如图,矩形 的对角线 , 相交于点 , 关于 的对称图形为 .
(1)求证:四边形 是菱形;
(2)连接 ,若 , .
①求 的值;
②若点 为线段 上一动点(不与点 重合),连接 ,一动点 从点 出发,以 的速度沿线段 匀速运动到点 ,再以 的速度沿线段 匀速运动到点 ,到达点 后停止运动,当点 沿上述路线运动到点 所需要的时间最短时,求 的长和点 走完全程所需的时间.
试题篮
()