优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 圆周角定理
初中数学

如图,点在以为直径的半圆上运动(点不与重合),平分,交于点,交于点

(1)  

(2)若,则  

来源:2020年湖南省长沙市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, AB 为半圆 O 的直径, M C 是半圆上的三等分点, AB = 8 BD 与半圆 O 相切于点 B .点 P AM ̂ 上一动点(不与点 A M 重合),直线 PC BD 于点 D BE OC 于点 E ,延长 BE PC 于点 F ,则下列结论正确的是   .(写出所有正确结论的序号)

PB = PD ;② BC ̂ 的长为 4 3 π ;③ DBE = 45 ° ;④ ΔBCF ΔPFB ;⑤ CF · CP 为定值.

来源:2020年湖南省岳阳市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, ΔABC 内接于 O AB O 的直径, BD O 相切于点 B BD AC 的延长线于点 D E BD 的中点,连接 CE

(1)求证: CE O 的切线.

(2)已知 BD = 3 5 CD = 5 ,求 O E 两点之间的距离.

来源:2020年湖南省永州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, AB O 的直径, AC O 的切线, BC O 于点 E

(1)若 D AC 的中点,证明: DE O 的切线;

(2)若 CA = 6 CE = 3 . 6 ,求 O 的半径 OA 的长.

来源:2020年湖南省湘西州中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AB = AC ,以 AB 为直径的 O BC 于点 D ,过点 D DE AC ,垂足为点 E

(1)求证: ΔABD ΔACD

(2)判断直线 DE O 的位置关系,并说明理由.

来源:2020年湖南省湘潭市中考数学试卷
  • 题型:未知
  • 难度:未知

定义:对角线互相垂直且相等的四边形叫做垂等四边形.

(1)下面四边形是垂等四边形的是    ;(填序号)

①平行四边形;②矩形;③菱形;④正方形

(2)图形判定:如图1,在四边形 ABCD 中, AD / / BC AC BD ,过点 D BD 垂线交 BC 的延长线于点 E ,且 DBC = 45 ° ,证明:四边形 ABCD 是垂等四边形.

(3)由菱形面积公式易知性质:垂等四边形的面积等于两条对角线乘积的一半.应用:在图2中,面积为24的垂等四边形 ABCD 内接于 O 中, BCD = 60 ° .求 O 的半径.

来源:2020年湖南省怀化市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, C = 90 ° AD 平分 BAC BC 于点 D ,过点 A 和点 D 的圆,圆心 O 在线段 AB 上, O AB 于点 E ,交 AC 于点 F

(1)判断 BC O 的位置关系,并说明理由;

(2)若 AD = 8 AE = 10 ,求 BD 的长.

来源:2020年湖南省衡阳市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,已知 AB O 的直径, C O 上的一点, D AB 上的一点, DE AB D DE BC F ,且 EF = EC

(1)求证: EC O 的切线;

(2)若 BD = 4 BC = 8 ,圆的半径 OB = 5 ,求切线 EC 的长.

来源:2020年湖南省常德市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, E F G 为圆上的三点, FEG = 50 ° P 点可能是圆心的是 (    )

A.

B.

C.

D.

来源:2020年湖北省宜昌市中考数学试卷
  • 题型:未知
  • 难度:未知

已知 ΔABC 内接于 O AB = AC ABC 的平分线与 O 交于点 D ,与 AC 交于点 E ,连接 CD 并延长与 O 过点 A 的切线交于点 F ,记 BAC = α

(1)如图1,若 α = 60 °

①直接写出 DF DC 的值为   

②当 O 的半径为2时,直接写出图中阴影部分的面积为   

(2)如图2,若 α < 60 ° ,且 DF DC = 2 3 DE = 4 ,求 BE 的长.

来源:2020年湖北省孝感市中考数学试卷
  • 题型:未知
  • 难度:未知

中,若弦垂直平分半径,则弦所对的圆周角等于  

来源:2020年湖北省襄阳市中考数学试卷
  • 题型:未知
  • 难度:未知

定义:有一组对角互余的四边形叫做对余四边形.

理解:

(1)若四边形 ABCD 是对余四边形,则 A C 的度数之和为        

证明:

(2)如图1, MN O 的直径,点 A B C O 上, AM CN 相交于点 D

求证:四边形 ABCD 是对余四边形;

探究:

(3)如图2,在对余四边形 ABCD 中, AB = BC ABC = 60 ° ,探究线段 AD CD BD 之间有怎样的数量关系?写出猜想,并说明理由.

来源:2020年湖北省咸宁市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 O 中, OA = 2 C = 45 ° ,则图中阴影部分的面积为 (    )

A.

π 2 - 2

B.

π - 2

C.

π 2 - 2

D.

π - 2

来源:2020年湖北省咸宁市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, ABC = 90 ° ,以 AB 为直径的 O AC 于点 D AE 与过点 D 的切线互相垂直,垂足为 E

(1)求证: AD 平分 BAE

(2)若 CD = DE ,求 sin BAC 的值.

来源:2020年湖北省武汉市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, ACB = 90 ° ,以斜边 AB 上的中线 CD 为直径作 O ,与 BC 交于点 M ,与 AB 的另一个交点为 E ,过 M MN AB ,垂足为 N

(1)求证: MN O 的切线;

(2)若 O 的直径为5, sin B = 3 5 ,求 ED 的长.

来源:2020年湖北省随州市中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学圆周角定理试题