如图,在平面直角坐标系中,四边形OABC是菱形,点C的坐标为(4,0)∠AOC= 60°,垂直于x轴的直线l从y轴出发,沿x轴正方向以每秒1个单位长度的速度向右平移,设直线l与菱形OABC的两边分别交于点M,N(点M在点N的上方),若△OMN的面积为S,直线l的运动时间为t 秒(0≤t≤4),则能大致反映S与t的函数关系的图象是( )
如图,从边长为(a+4)cm的正方形纸片中剪去一个边长为cm的正方形,剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积( )
A. | B. |
C. | D. |
已知一个四边形的对角线互相垂直,那么顺次连接这个四边形的四边中点所得的四边形是
A.矩形 | B.菱形 | C.等腰梯形 | D.正方形 |
四边形ABCD中,对角线AC、BD相交于点O,给出下列四组条件:①AB∥CD,AD∥BC;②AB=CD,AD=BC;③AO=CO,BO=DO;④AB∥CD,AD=BC.其中一定能判定这个四边形是平行四边形的条件有
A.1组 B.2组 C.3组 D.4组
如图,在直角梯形中,AB∥CD;⊥动点从点出发,沿,运动至点停止.设点运动的路程为,的面积为,如果关于的函数图象如图所示,则的面积是( )
A.3 | B.4 | C.5 | D.6 |
如图,点D是△ABC的边AB的延长线上一点,点F是边BC上的一个动点(不与点B重合).以BD、BF为邻边作平行四边形BDEF,又APBE(点P、E在直线AB的同侧),如果,那么△PBC的面积与△ABC面积之比为【 】
A. B. C. D.
如图,四边形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC、CD上分别找一点M、N,使得△AMN周长最小时,则∠AMN+∠ANM的度数为( )
A.100° B.110° C.120° D.130°
如图9四边形ABCD是菱形,且,是等边三角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转得到BN,连接EN、AM、CM,则下列五个结论中正确的是( )
①若菱形ABCD的边长为1,则的最小值1;
②;
③;④连接AN,则;
⑤当的最小值为时,菱形ABCD的边长为2.
A.①②③ | B.②④⑤ | C.①②⑤ | D.②③⑤ |
如图,正方形ABCE的边长为1,点M、N分别在BC、CD上,且△CMN的周长为2,则△MAN的面积的最小值为( )
A、 B、 C、 D、
如图,E、F、G、H分别是BD、BC、AC、AD的中点,且AB=CD.下列结论:
①EG⊥FH,②四边形EFGH是矩形,③HF平分∠EHG,④EG=(BC-AD),⑤四边形
EFGH是菱形.其中正确的个数是【 】
A.1 B.2 C.3 D.4
如图2,四边形ABCD中,E是BC的中点,连结DE并延长,交AB的延长线
于点F,AB=BF.添加一个条件,使四边形ABCD是平行四边形.下列条件中正确的是( )
A.AD=BC | B.CD=BF | C.∠F=∠CDE | D.∠A=∠C |
试题篮
()