优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 切线的性质 / 解答题
初中数学

如图,在中,直径垂直于不过圆心的弦,垂足为点,连接,点上,且

(1)求证:

(2)过点的切线交的延长线于点,试判断是否相等,并说明理由;

(3)设半径为4,点中点,点上,求线段的最小值.

来源:2017年四川省内江市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,已知 AB 是圆 O 的直径,弦 CD AB ,垂足为 H ,与 AC 平行的圆 O 的一条切线交 CD 的延长线于点 M ,交 AB 的延长线于点 E ,切点为 F ,连接 AF CD 于点 N

(1)求证: CA = CN

(2)连接 DF ,若 cos DFA = 4 5 AN = 2 10 ,求圆 O 的直径的长度.

来源:2017年四川省绵阳市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, O Rt Δ ABC 的直角边 AC 和斜边 AB 分别相切于点 C D ,与边 BC 相交于点 F OA CD 相交于点 E ,连接 FE 并延长交 AC 边于点 G

(1)求证: DF / / AO

(2)若 AC = 6 AB = 10 ,求 CG 的长.

来源:2017年四川省泸州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,以 AB 为直径的 O 外接于 ΔABC ,过 A 点的切线 AP BC 的延长线交于点 P APB 的平分线分别交 AB AC 于点 D E ,其中 AE BD ( AE < BD ) 的长是一元二次方程 x 2 5 x + 6 = 0 的两个实数根.

(1)求证: PA BD = PB AE

(2)在线段 BC 上是否存在一点 M ,使得四边形 ADME 是菱形?若存在,请给予证明,并求其面积;若不存在,说明理由.

来源:2018年山东省淄博市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, AB O 的直径,点 D O 上, AD 的延长线与过点 B 的切线交于点 C E 为线段 AD 上的点,过点 E 的弦 FG AB 于点 H

(1)求证: C = AGD

(2)已知 BC = 6 CD = 4 ,且 CE = 2 AE ,求 EF 的长.

来源:2020年四川省泸州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, AB O 的直径, C O 上一点, AD 和过点 C 的切线互相垂直,垂足为 D

(1)求证: CAD = CAB

(2)若 AD AB = 2 3 AC = 2 6 ,求 CD 的长.

来源:2020年四川省甘孜州中考数学试卷
  • 题型:未知
  • 难度:未知

如图, AB O 的直径, CD O 相切于点 C ,与 AB 的延长线交于点 D CE AB 于点 E

(1)求证: BCE = BCD

(2)若 AD = 10 CE = 2 BE ,求 O 的半径.

来源:2019年新疆生产建设兵团中考数学试卷
  • 题型:未知
  • 难度:未知

如图,已知 AB CD O 的两条直径, DF 为切线,过 AO 上一点 N NM DF M ,连接 DN 并延长交 O 于点 E ,连接 CE

(1)求证: ΔDMN ΔCED

(2)设 G 为点 E 关于 AB 对称点,连接 GD GN ,如果 DNO = 45 ° O 的半径为3,求 D N 2 + G N 2 的值.

来源:2017年四川省德阳市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, AB O 的直径, AC 为弦, BA 的平分线交 O 于点 D ,过点 D 的切线交 AC 的延长线于点 E

求证:(1) DE AE

(2) AE + CE = AB

来源:2018年黑龙江省绥化市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, AB O 的直径,点 E 为线段 OB 上一点(不与 O B 重合),作 EC OB ,交 O 于点 C ,作直径 CD ,过点 C 的切线交 DB 的延长线于点 P ,作 AF PC 于点 F ,连接 CB

(1)求证: AC 平分 FAB

(2)求证: B C 2 = CE CP

(3)当 AB = 4 3 CF CP = 3 4 时,求劣弧 BD ̂ 的长度.

来源:2018年黑龙江省大庆市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,点 P O 外, PC O 的切线, C 为切点,直线 PO O 相交于点 A B

(1)若 A = 30 ° ,求证: PA = 3 PB

(2)小明发现, A 在一定范围内变化时,始终有 BCP = 1 2 ( 90 ° P ) 成立.请你写出推理过程.

来源:2019年贵州省黔东南州中考数学试卷
  • 题型:未知
  • 难度:未知

如图,已知 AB O 的直径,点 P O 上一点,连接 OP ,点 A 关于 OP 的对称点 C 恰好落在 O 上.

(1)求证: OP / / BC

(2)过点 C O 的切线 CD ,交 AP 的延长线于点 D .如果 D = 90 ° DP = 1 ,求 O 的直径.

来源:2019年贵州省贵阳市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, ΔABC O 的内接三角形, AB O 的直径,过点 A O 的切线交 BC 的延长线于点 D

(1)求证: ΔDAC ΔDBA

(2)过点 C O 的切线 CE AD 于点 E ,求证: CE = 1 2 AD

(3)若点 F 为直径 AB 下方半圆的中点,连接 CF AB 于点 G ,且 AD = 6 AB = 3 ,求 CG 的长.

来源:2018年广西柳州市中考数学试卷
  • 题型:未知
  • 难度:未知

已知 AD O 的直径, BC O 的切线,切点为 M ,分别过 A D 两点作 BC 的垂线,垂足分别为 B C AD 的延长线与 BC 相交于点 E

(1)求证: ΔABM ΔMCD

(2)若 AD = 8 AB = 5 ,求 ME 的长.

来源:2018年广西百色市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, BAC = 90 ° O AB 边上的一点,以 OA 为半径的 O 与边 BC 相切于点 E

(1)若 AC = 5 BC = 13 ,求 O 的半径;

(2)过点 E 作弦 EF AB M ,连接 AF ,若 F = 2 B ,求证:四边形 ACEF 是菱形.

来源:2016年云南省曲靖市中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学切线的性质解答题