如图,在正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系内, 的三个顶点坐标分别为 , , .
(1)画出 关于 轴对称的△ .
(2)画出 绕点 逆时针旋转 后得到的△ .
(3)在(2)的条件下,求点 所经过的路径长(结果保留 .
如图,四边形 ABCD中, MA= MC, MB= MD,以 AB为直径的圆 O过点 M且与 DC延长线相切于点 E.
(1)求证:四边形 ABCD是菱形;
(2)若 AB=4,求 的长(结果请保留π)
如图,用一个半径为5cm的定滑轮带动重物上升,滑轮上一点A旋转了108°,假设绳索(粗细不计)与滑轮之间没有滑动,则重物上升了( )
A.πcmB.2πcmC.3πcmD.5πcm
如图, 为 的直径, , 弦 ,垂足为 , 切 于点 , ,连接 、 、 ,下列结论不正确的是
A. |
|
B. |
是等边三角形 |
C. |
|
D. |
的长为 |
如图,分别以等边三角形的每个顶点为圆心、以边长为半径,在另两个顶点间作一段圆弧,三段圆弧围成的曲边三角形称为勒洛三角形.若等边三角形的边长为 ,则勒洛三角形的周长为 .
(材料阅读)
地球是一个球体,任意两条相对的子午线都组成一个经线圈(如图1中的 .人们在北半球可观测到北极星,我国古人在观测北极星的过程中发明了如图2所示的工具尺(古人称它为“复矩”),尺的两边互相垂直,角顶系有一段棉线,棉线末端系一个铜锤,这样棉线就与地平线垂直.站在不同的观测点,当工具尺的长边指向北极星时,短边与棉线的夹角 的大小是变化的.
(实际应用)
观测点 在图1所示的 上,现在利用这个工具尺在点 处测得 为 ,在点 所在子午线往北的另一个观测点 ,用同样的工具尺测得 为 . 是 的直径, .
(1)求 的度数;
(2)已知 ,求这两个观测点之间的距离即 上 的长. 取
如图,在 中, , ,以 为直径的 交 于点 ,点 为线段 上的一点, ,连接 并延长交 的延长线于点 ,连接 交 于点 ,若 ,则 的长是
A. |
|
B. |
|
C. |
|
D. |
|
如图,在矩形 中, , ,以点 为圆心, 长为半径画弧交边 于点 ,连接 ,则 的长为
A. |
|
B. |
|
C. |
|
D. |
|
如图,在△ABC中,AB=AC,AD是角平分线,BE平分∠ABC交AD于点E,点O在AB上,以OB为半径的⊙O经过点E,交AB于点F
(1)求证:AD是⊙O的切线;
(2)若AC=4,∠C=30°,求 的长.
试题篮
()