如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系内, 的三个顶点坐标分别为 , , .
(1)画出 关于 轴对称的△ ,并写出点 的坐标;
(2)画出 绕点 顺时针旋转 后得到的△ ,并写出点 的坐标;
(3)在(2)的条件下,求点 旋转到点 所经过的路径长(结果保留 .
如图,在菱形 中, 是对角线 上一点 , ,垂足为 ,以 为半径的 分别交 于点 ,交 的延长线于点 , 与 交于点 .
(1)求证: 是 的切线;
(2)若 是 的中点, , .
①求 的长;
②求 的长.
在边长为1的方格纸中建立直角坐标系,如图所示,O、A、B三点均为格点.
(1)直接写出线段OB的长;
(2)将△OAB绕点O沿逆时针方向旋转90°得到△OA′B′。请你画出△OA′B′,并求在旋转过程中,点B所经过的路径弧BB′的长度.
如图,在 中, ,以 为直径的半圆 交 于点 ,过点 作半圆 的切线,交 于点 .
(1)求证: ;
(2)若 , ,求 的长.
如图,已知 是 的直径, , 是 上的点, ,交 于点 ,连接 .
(1)求证: ;
(2)若 , ,求 的长.
如图, 是以 为直径的半圆 的切线, 为半圆上一点, , , 的延长线相交于点 .
(1)求证: 是半圆 的切线;
(2)连接 ,求证: ;
(3)若 , ,求 的长.
如图,在 中, ,对角线 , 经过点 , ,与 交于点 ,连接 并延长与 交于点 ,与 的延长线交于点 , .
(1)求证: 是 的切线;
(2)若 ,求 的长(结果保留 .
将一物体(视为边长为 米的正方形 从地面 上挪到货车车厢内.如图所示,刚开始点 与斜面 上的点 重合,先将该物体绕点 (E)按逆时针方向旋转至正方形 的位置,再将其沿 方向平移至正方形 的位置(此时点 与点 重合),最后将物体移到车厢平台面 上.已知 , ,过点 作 于点 , 米, 米.
(1)求线段 的长度;
(2)求在此过程中点 运动至点 所经过的路程.
如图,已知 是 的内接三角形, 是 的直径,连结 , 平分 .
(1)求证: ;
(2)若 ,求 的长.
如图,在 中, , ,以点 为圆心, 为半径的圆交 的延长线于点 ,过点 作 的平行线,交 于点 ,连接 .
(1)求证: 为 的切线;
(2)若 ,求弧 的长.
已知 的两边分别与 相切于点 , , 的半径为 .
(1)如图1,点 在点 , 之间的优弧上, ,求 的度数;
(2)如图2,点 在圆上运动,当 最大时,要使四边形 为菱形, 的度数应为多少?请说明理由;
(3)若 交 于点 ,求第(2)问中对应的阴影部分的周长(用含 的式子表示).
四边形 的对角线交于点 ,有 , ,以 为直径的半圆过点 ,圆心为 .
(1)利用图1,求证:四边形 是菱形.
(2)如图2,若 的延长线与半圆相切于点 ,已知直径 .
①连接 ,求 的面积.
②求弧 的长.
试题篮
()