优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 圆的综合题
初中数学

如图,的直径,点延长线上一点,过点的切线,切点是,过点作弦,连接

(1)求证:的切线;

(2)若,求的长;

(3)试探究线段之间的数量关系,并说明理由.

来源:2019年四川省广元市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, ACB = 90 ° ,以 BC 为直径的 O AB 于点 D E AC 的中点, OE CD 于点 F

(1)若 BCD = 36 ° BC = 10 ,求 BD ̂ 的长;

(2)判断直线 DE O 的位置关系,并说明理由;

(3)求证: 2 C E 2 = AB · EF

来源:2017年湖南省娄底市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在菱形中,连结交于点,过点于点,以点为圆心,为半径的半圆交于点

①求证:的切线.

②若,求图中阴影部分的面积.

③在②的条件下,是线段上的一动点,当为何值时,的值最小,并求出最小值.

来源:2019年四川省巴中市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,△ ABC内接于⊙ OBC=2, ABAC,点 D AC 上的动点,且cos∠ ABC 10 10

(1)求 AB的长度;

(2)在点 D的运动过程中,弦 AD的延长线交 BC延长线于点 E,问 ADAE的值是否变化?若不变,请求出 ADAE的值;若变化,请说明理由;

(3)在点 D的运动过程中,过 A点作 AHBD,求证: BHCD+ DH

来源:2018年广东省深圳市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,的直径,于点于点平分,连接

(1) 求证:

(2) 若,求的半径 .

来源:2018年云南省昆明市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,以原点 O 为圆心,3为半径的圆与 x 轴分别交于 A B 两点(点 B 在点 A 的右边), P 是半径 OB 上一点,过 P 且垂直于 AB 的直线与 O 分别交于 C D 两点(点 C 在点 D 的上方),直线 AC DB 交于点 E .若 AC : CE = 1 : 2

(1)求点 P 的坐标;

(2)求过点 A 和点 E ,且顶点在直线 CD 上的抛物线的函数表达式.

来源:2017年江苏省无锡市中考数学试卷
  • 题型:未知
  • 难度:未知

阅读以下材料,并按要求完成相应的任务:

莱昂哈德欧拉是瑞士数学家,在数学上经常见到以他的名字命名的重要常数,公式和定理,下面就是欧拉发现的一个定理:在中,分别为外接圆和内切圆的半径,分别为其中外心和内心,则

如图1,分别是的外接圆和内切圆,相切分于点,设的半径为的半径为,外心(三角形三边垂直平分线的交点)与内心(三角形三条角平分线的交点)之间的距离,则有

下面是该定理的证明过程(部分)

延长于点,过点的直径,连接

(同弧所对的圆周角相等).

,①

如图2,在图1(隐去的基础上作的直径,连接

的直径,所以

相切于点,所以

(同弧所对的圆周角相等),

任务:(1)观察发现:  (用含的代数式表示);

(2)请判断的数量关系,并说明理由.

(3)请观察式子①和式子②,并利用任务(1),(2)的结论,按照上面的证明思路,完成该定理证明的剩余部分;

(4)应用:若的外接圆的半径为,内切圆的半径为,则的外心与内心之间的距离为  

来源:2019年山西省中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在⊙ O中, B是⊙ O上的一点,∠ ABC=120°,弦 AC=2 3 ,弦 BM平分∠ ABCAC于点 D,连接 MAMC

(1)求⊙ O半径的长;

(2)求证: AB+ BCBM

来源:2019年内蒙古包头市中考数学试卷
  • 题型:未知
  • 难度:未知

(2) tan ACB = AB BC = 2 2 BC = 2

AB = BC · tan ACB = 2

AC = 6

ACB = DCE

tan DCE = tan ACB = 2 2

DE = DC · tan DCE = 1

方法一:在 Rt Δ CDE 中, CE = C D 2 + D E 2 = 3

连接 OE ,设 O 的半径为 r ,则在 Rt Δ COE 中, C O 2 = O E 2 + C E 2 ,即 ( 6 r ) 2 = r 2 + 3

解得: r = 6 4

方法二: AE = AD DE = 1 ,过点 O OM AE 于点 M ,则 AM = 1 2 AE = 1 2

Rt Δ AMO 中, OA = AM cos EAO = 1 2 ÷ 2 6 = 6 4

本题考查了圆的综合题:圆的切线垂直于过切点的半径;利用勾股定理计算线段的长.

来源:2016年贵州省安顺市中考数学试卷
  • 题型:未知
  • 难度:未知

已知 ΔABC 内接于 O AB = AC BAC = 42 ° ,点 D O 上一点.

(Ⅰ)如图①,若 BD O 的直径,连接 CD ,求 DBC ACD 的大小;

(Ⅱ)如图②,若 CD / / BA ,连接 AD ,过点作 O 的切线,与 OC 的延长线交于点 E ,求 E 的大小.

来源:2021年天津市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, AB O 的直径, C O 上一点 ( C 不与点 A B 重合)连接 AC BC ,过点 C CD AB ,垂足为点 D .将 ΔACD 沿 AC 翻折,点 D 落在点 E 处得 ΔACE AE O 于点 F

(1)求证: CE O 的切线;

(2)若 BAC = 15 ° OA = 2 ,求阴影部分面积.

来源:2021年四川省达州市中考数学试卷
  • 题型:未知
  • 难度:未知

已知 AB CD O 的两条弦,直线 AB CD 互相垂直,垂足为 E ,连接 AC ,过点 B BF AC ,垂足为 F ,直线 BF 交直线 CD 于点 M

(1)如图1,当点 E O 内时,连接 AD AM BD ,求证: AD = AM

(2)如图2,当点 E O 外时,连接 AD AM ,求证: AD = AM

(3)如图3,当点 E O 外时, ABF 的平分线与 AC 交于点 H ,若 tan C = 4 3 ,求 tan ABH 的值.

来源:2016年山东省莱芜市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, AB O 的直径, D E O 上位于 AB 异侧的两点,连接 BD 并延长至点 C ,使得 CD = BD ,连接 AC O 于点 F ,连接 AE DE DF

(1)证明: E = C

(2)若 E = 55 ° ,求 BDF 的度数;

(3)设 DE AB 于点 G ,若 DF = 4 cos B = 2 3 E AB ̂ 的中点,求 EG · ED 的值.

来源:2016年江苏省苏州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,已知四边形 ABCD 内接于 O A BDC ̂ 的中点, AE AC A ,与 O CB 的延长线交于点 F E ,且 BF ̂ = AD ̂

(1)求证: ΔADC ΔEBA

(2)如果 AB = 8 CD = 5 ,求 tan CAD 的值.

来源:2016年四川省凉山州中考数学试卷
  • 题型:未知
  • 难度:未知

我们知道,顶点坐标为 ( h , k ) 的抛物线的解析式为 y = a ( x - h ) 2 + k ( a 0 ) .今后我们还会学到,圆心坐标为 ( a , b ) ,半径为 r 的圆的方程 ( x - a ) 2 + ( y - b ) 2 = r 2 ,如:圆心为 P ( - 2 , 1 ) ,半径为3的圆的方程为 ( x + 2 ) 2 + ( y - 1 ) 2 = 9

(1)以 M ( - 3 , - 1 ) 为圆心, 3 为半径的圆的方程为    

(2)如图,以 B ( - 3 , 0 ) 为圆心的圆与 y 轴相切于原点, C B 上一点,连接 OC ,作 BD OC ,垂足为 D ,延长 BD y 轴于点 E ,已知 sin AOC = 3 5

①连接 EC ,证明: EC B 的切线;

②在 BE 上是否存在一点 Q ,使 QB = QC = QE = QO ?若存在,求点 Q 的坐标,并写出以 Q 为圆心,以 QB 为半径的 Q 的方程;若不存在,请说明理由.

来源:2020年内蒙古鄂尔多斯市中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学圆的综合题试题