如图, 是 的直径,弦 ,垂足为 ,连接 ,过 上一点 作 交 的延长线于点 ,连接 交 于点 ,且 ,连接 .
(1)求证: ;
(2)求证: 是 的切线;
(3)延长 交 的延长线于点 ,若 , ,求 的值.
如图,在平面直角坐标系中,已知点 ,以原点 为圆心、3为半径作圆. 从点 出发,以每秒1个单位的速度沿 轴正半轴运动,运动时间为 .连接 ,将 沿 翻折,得到 .求 有一边所在直线与 相切时 的值.
如图所示,在Rt△ABC与Rt△OCD中, ,O为AB的中点.
(1)求证: .
(2)已知点E在AB上,且 .
(i)若 , ,求CE的长;
(ii)试判定CD与以A为圆心、AE为半径的⊙A的位置关系,并请说明理由.
如图, 是 的直径, 、 为 上位于 异侧的两点,连接 并延长至点 ,使得 ,连接 交 于点 ,连接 、 、 .
(1)证明: ;
(2)若 ,求 的度数;
(3)设 交 于点 ,若 , , 是 的中点,求 的值.
在平面直角坐标系中,△ABC三个顶点坐标为 、 、
(1)求△ABC内切圆⊙D的半径.
(2)过点 的直线与⊙D相切于点F(点F在第一象限),求直线EF的解析式.
(3)以(2)为条件,P为直线EF上一点,以P为圆心,以 为半径作⊙P.若⊙P上存在一点到△ABC三个顶点的距离相等,求此时圆心P的坐标.
如图,点 是 的边 上一点,以 为半径的 与边 相切于点 ,与边 , 分别相交于点 , ,且 .
(1)求证: ;
(2)当 , 时,求 的长.
如图,在Rt△ ABC中,∠ C=90°,以 BC为直径的⊙ O交斜边 AB于点 M,若 H是 AC的中点,连接 MH.
(1)求证: MH为⊙ O的切线.
(2)若 ,求⊙ O的半径.
(3)在(2)的条件下分别过点 A、 B作⊙ O的切线,两切线交于点 D, AD与⊙ O相切于 N点,过 N点作 NQ⊥ BC,垂足为 E,且交⊙ O于 Q点,求线段 NQ的长度.
如图1,在△ ABC中, AB= AC,⊙ O是△ ABC的外接圆,过点 C作∠ BCD=∠ ACB交⊙ O于点 D,连接 AD交 BC于点 E,延长 DC至点 F,使 CF= AC,连接 AF.
(1)求证: ED= EC;
(2)求证: AF是⊙ O的切线;
(3)如图2,若点 G是△ ACD的内心, BC• BE=25,求 BG的长.
如图,四边形 ABCD中, AB= AD= CD,以 AB为直径的⊙ O经过点 C,连接 AC、 OD交于点 E.
(1)证明: OD∥ BC;
(2)若tan∠ ABC=2,证明: DA与⊙ O相切;
(3)在(2)条件下,连接 BD交⊙ O于点 F,连接 EF,若 BC=1,求 EF的长.
定义:有一组对角互余的四边形叫做对余四边形.
理解:
(1)若四边形 是对余四边形,则 与 的度数之和为 ;
证明:
(2)如图1, 是 的直径,点 , , 在 上, , 相交于点 .
求证:四边形 是对余四边形;
探究:
(3)如图2,在对余四边形 中, , ,探究线段 , 和 之间有怎样的数量关系?写出猜想,并说明理由.
如图,已知四边形 内接于 , 是 的中点, 于 ,与 及 的延长线交于点 、 ,且 .
(1)求证: ;
(2)如果 , ,求 的值.
如图,△ ABC内接于⊙ O, BC=2, AB= AC,点 D为 上的动点,且cos∠ ABC= .
(1)求 AB的长度;
(2)在点 D的运动过程中,弦 AD的延长线交 BC延长线于点 E,问 AD• AE的值是否变化?若不变,请求出 AD• AE的值;若变化,请说明理由;
(3)在点 D的运动过程中,过 A点作 AH⊥ BD,求证: BH= CD+ DH.
如图,在 中, ,点 在 上,以 为直径的 与边 相切于点 ,与边 相交于点 ,且 ,连接 并延长交 于点 ,连接 .
(1)求证:
① .
② 是 的切线.
(2)若 ,求图形中阴影部分的面积.
如图,以Rt△ ABC的直角边 AB为直径的⊙ O交斜边 AC于点 D,过点 D作⊙ O的切线与 BC交于点 E,弦 DM与 AB垂直,垂足为 H.
(1)求证: E为 BC的中点;
(2)若⊙ O的面积为12π,两个三角形△ AHD和△ BMH的外接圆面积之比为3,求△ DEC的内切圆面积 S 1和四边形 OBED的外接圆面积 S 2的比.
试题篮
()