优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 圆的综合题
初中数学

如图所示, AB O 的直径,点 P AB 延长线上的一点,过点 P O 的切线,切点为 C ,连接 AC BC

(1)求证: BAC = BCP

(2)若点 P AB 的延长线上运动, CPA 的平分线交 AC 于点 D ,你认为 CDP 的大小是否发生变化?若变化,请说明理由;若没有变化,求出 CDP 的大小.

来源:2018年甘肃省天水市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,点 O ΔABC 的边 AB 上一点,以 OB 为半径的 O 与边 AC 相切于点 E ,与边 BC AB 分别相交于点 D F ,且 DE = EF

(1)求证: C = 90 °

(2)当 BC = 3 sin A = 3 5 时,求 AF 的长.

来源:2018年甘肃省金昌市中考数学试卷
  • 题型:未知
  • 难度:未知

已知,如图, ΔABC 中, AB = 10 BC = 6 AC = 8 ,半径为1的 O 与三角形的边 AB AC 都相切,点 P O 上一动点,点 Q BC 边上一动点,则 PQ 的最大值与最小值的和为 (    )

A.11B. 5 2 + 4 C. 5 2 + 5 D.12

来源:2017年江苏省无锡市中考数学试卷(副卷)
  • 题型:未知
  • 难度:未知

如图,在 ΔAOB 中, AOB 为直角, OA = 6 OB = 8 ,半径为2的动圆圆心 Q 从点 O 出发,沿着 OA 方向以1个单位长度 / 秒的速度匀速运动,同时动点 P 从点 A 出发,沿着 AB 方向也以1个单位长度 / 秒的速度匀速运动,设运动时间为 t ( 0 < t 5 ) P 为圆心, PA 长为半径的 P AB OA 的另一个交点分别为 C D ,连接 CD QC

(1)当 t 为何值时,点 Q 与点 D 重合?

(2)当 Q 经过点 A 时,求 P OB 截得的弦长.

(3)若 P 与线段 QC 只有一个公共点,求 t 的取值范围.

来源:2016年四川省攀枝花市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,已知四边形 ABCD 内接于 O A BDC ̂ 的中点, AE AC A ,与 O CB 的延长线交于点 F E ,且 BF ̂ = AD ̂

(1)求证: ΔADC ΔEBA

(2)如果 AB = 8 CD = 5 ,求 tan CAD 的值.

来源:2016年四川省凉山州中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,已知点 A ( 5 , 0 ) ,以原点 O 为圆心、3为半径作圆. P 从点 O 出发,以每秒1个单位的速度沿 y 轴正半轴运动,运动时间为 t ( s ) .连接 AP ,将 ΔOAP 沿 AP 翻折,得到 ΔAPQ .求 ΔAPQ 有一边所在直线与 O 相切时 t 的值.

来源:2017年江苏省无锡市中考数学试卷(副卷)
  • 题型:未知
  • 难度:未知

如图,已知 O 的半径为 6 cm ,射线 PM 经过点 O OP = 10 cm ,射线 PN O 相切于点 Q A B 两点同时从点 P 出发,点 A 5 cm / s 的速度沿射线 PM 方向运动,点 B 4 cm / s 的速度沿射线 PN 方向运动,设运动时间为 ts

(1)求 PQ 的长;

(2)当直线 AB O 相切时,求证: AB PN

(3)当 t 为何值时,直线 AB O 相切?

来源:2016年四川省广元市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, ABC = 90 ° ,以 CB 为半径作 C ,交 AC 于点 D ,交 AC 的延长线于点 E ,连接 BD BE

(1)求证: ΔABD ΔAEB

(2)当 AB BC = 4 3 时,求 tan E

(3)在(2)的条件下,作 BAC 的平分线,与 BE 交于点 F ,若 AF = 2 ,求 C 的半径.

来源:2016年四川省成都市中考数学试卷
  • 题型:未知
  • 难度:未知

已知 ΔABC 内接于 O AB = AC BAC = 42 ° ,点 D O 上一点.

(Ⅰ)如图①,若 BD O 的直径,连接 CD ,求 DBC ACD 的大小;

(Ⅱ)如图②,若 CD / / BA ,连接 AD ,过点作 O 的切线,与 OC 的延长线交于点 E ,求 E 的大小.

来源:2021年天津市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, AB O 的直径, C O 上一点 ( C 不与点 A B 重合)连接 AC BC ,过点 C CD AB ,垂足为点 D .将 ΔACD 沿 AC 翻折,点 D 落在点 E 处得 ΔACE AE O 于点 F

(1)求证: CE O 的切线;

(2)若 BAC = 15 ° OA = 2 ,求阴影部分面积.

来源:2021年四川省达州市中考数学试卷
  • 题型:未知
  • 难度:未知

定义:

数学活动课上,李老师给出如下定义:如果一个三角形有一边上的中线等于这条边的一半,那么称这个三角形为“智慧三角形”.

理解:

(1)如图1,已知 A B O 上两点,请在圆上找出满足条件的点 C ,使 ΔABC 为“智慧三角形”(画出点 C 的位置,保留作图痕迹);

(2)如图2,在正方形 ABCD 中, E BC 的中点, F CD 上一点,且 CF = 1 4 CD ,试判断 ΔAEF 是否为“智慧三角形”,并说明理由;

运用:

(3)如图3,在平面直角坐标系 xOy 中, O 的半径为1,点 Q 是直线 y = 3 上的一点,若在 O 上存在一点 P ,使得 ΔOPQ 为“智慧三角形”,当其面积取得最小值时,直接写出此时点 P 的坐标.

来源:2017年湖北省咸宁市中考数学试卷
  • 题型:未知
  • 难度:未知

如果三角形三边的长 a b c 满足 a + b + c 3 = b ,那么我们就把这样的三角形叫做“匀称三角形”,如:三边长分别为1,1,1或3,5,7, 的三角形都是“匀称三角形”.

(1)如图1,已知两条线段的长分别为 a c ( a < c ) .用直尺和圆规作一个最短边、最长边的长分别为 a c 的“匀称三角形”(不写作法,保留作图痕迹);

(2)如图2, ΔABC 中, AB = AC ,以 AB 为直径的 O BC 于点 D ,过点 D O 的切线交 AB 延长线于点 E ,交 AC 于点 F ,若 BE CF = 5 3 ,判断 ΔAEF 是否为“匀称三角形”?请说明理由.

来源:2016年江苏省镇江市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AB = AC ,以 AB 为直径的 O 与边 BC AC 分别交于 D E 两点,过点 D DH AC 于点 H

(1)判断 DH O 的位置关系,并说明理由;

(2)求证: H CE 的中点;

(3)若 BC = 10 cos C = 5 5 ,求 AE 的长.

来源:2016年四川省阿坝州中考数学试卷
  • 题型:未知
  • 难度:未知

如图,四边形ABCD内接于⊙O,对角线AC为⊙O的直径,过点CAC的垂线交AD的延长线于点E,点FCE的中点,连接DBDCDF

(1)求 CDE 的度数;

(2)求证:DF是⊙O的切线;

(3)若 AC 2 5 DE ,求 tan ABD 的值.

来源:2016年湖南省长沙市中考数学试卷
  • 题型:未知
  • 难度:未知

数学活动﹣旋转变换

(1)如图①,在△ABC中, ABC 130 ° ,将△ABC绕点C逆时针旋转50°得到△ABC,连接BB′,求∠ABB的大小;

(2)如图②,在△ABC中, ABC 150 ° AB 3 BC 5 ,将△ABC绕点C逆时针旋转60°得到△ABC,连接BB′,以A′为圆心,AB′长为半径作圆.

(Ⅰ)猜想:直线BB′与⊙A′的位置关系,并证明你的结论;

(Ⅱ)连接AB,求线段AB的长度;

(3)如图③,在△ABC中, ABC α 90 ° α 180 ° AB m BC n ,将△ABC绕点C逆时针旋转2β角度 0 ° 2 β 180 ° 得到△ABC,连接ABBB′,以A′为圆心,AB′长为半径作圆,问:角α与角β满足什么条件时,直线BB′与⊙A′相切,请说明理由,并求此条件下线段AB的长度(结果用角α或角β的三角函数及字母mn所组成的式子表示)

来源:2016年湖南省岳阳市中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学圆的综合题试题