如图, 在平面直角坐标系内,顶点的坐标分别为 , , .
(1)平移 ,使点 移到点 ,画出平移后的△ ,并写出点 , 的坐标;
(2)将 绕点 旋转 ,得到△ ,画出旋转后的△ ;
(3)求(2)中的点 旋转到点 时,点 经过的路径长(结果保留 .
如图,网格中每个小方格都是边长为1个单位长度的正方形,点 , , 的坐标分别为 , , .先将 沿一个确定方向平移,得到△ ,点 的对应点 的坐标是 ;再将△ 绕原点 顺时针旋转 ,得到△ ,点 的对应点为 .
(1)画出△ ,并直接写出点 的坐标;
(2)画出△ ,并直接写出 的值.
如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点三角形 (顶点是网格线的交点)
(1)先将 竖直向上平移5个单位,再水平向右平移4个单位得到△ ,请画出△ ;
(2)将△ 绕 点顺时针旋转 ,得△ ,请画出△ ;
(3)求线段 变换到 的过程中扫过区域的面积.
如图所示,正方形网格中, 为格点三角形(即三角形的顶点都在格点上)
①把 沿 方向平移,请在网格中画出当点 移动到点 时的△ ;
②把△ 绕点 按逆时针方向旋转 后得到△ ,如果网格中小正方形的边长为1,求点 旋转到 的路径长.
如图,在平面直角坐标系中,已知 的三个顶点坐标分别是 , ,
(1)将 向上平移4个单位长度得到△ ,请画出△ ;
(2)请画出与 关于 轴对称的△ ;
(3)请写出 、 的坐标.
直线 的解析式为 ,分别交 轴、 轴于点 , .
(1)写出 , 两点的坐标,并画出直线 的图象;
(2)将直线 向上平移4个单位得到 , 交 轴于点 .作出 的图象, 的解析式是 .
(3)将直线 绕点 顺时针旋转 得到 , 交 于点 .作出 的图象, .
如图,在网格中,每个小正方形的边长均为1个单位长度,我们将小正方形的顶点叫做格点,线段 的端点均在格点上.
(1)将线段 向右平移3个单位长度,得到线段 ,画出平移后的线段并连接 和 ,两线段相交于点 ;
(2)求证: △ .
如图,在平面直角坐标系中, 的三个顶点分别为 , , .
(1)把 向上平移3个单位后得到△ ,请画出△ 并写出点 的坐标;
(2)已知点 与点 关于直线 成轴对称,请画出直线 及 关于直线 对称的△ ,并直接写出直线 的函数解析式.
已知:如图 三个顶点的坐标分别为 、 、 ,正方形网格中,每个小正方形的边长是1个单位长度.
(1)画出 向上平移6个单位得到的△ ;
(2)以点 为位似中心,在网格中画出△ ,使△ 与 位似,且△ 与 的位似比为 ,并直接写出点 的坐标.
如图,方格中,每个小正方形的边长都是单位1, 在平面直角坐标系中的位置如图.
(1)画出将 向右平移2个单位得到△ ;
(2)画出将 绕点 顺时针方向旋转 得到的△ ;
(3)求△ 与△ 重合部分的面积.
如图,在平面直角坐标系中,点A、B、C的坐标分别为(﹣1,3)、(﹣4,1)(﹣2,1),先将△ABC沿一确定方向平移得到△A1B1C1,点B的对应点B1的坐标是(1,2),再将△A1B1C1绕原点O顺时针旋转90°得到△A2B2C2,点A1的对应点为点A2.
(1)画出△A1B1C1;
(2)画出△A2B2C2;
(3)求出在这两次变换过程中,点A经过点A1到达A2的路径总长.
如图,△ABC三个顶点的坐标分别为A(﹣1,3),B(﹣4,1),C(﹣2,1).
(1)请画出△ABC向右平移5个单位长度后得到的△A1B1C1.
(2)请画出△A1B1C1关于原点对称的△A2B2C2.
(3)求四边形ABA2B2的面积.
如图,平面直角坐标系内,小正方形网格的边长为1个单位长度,△ ABC的三个顶点的坐标分别为 A(﹣1,3), B(﹣4,0), C(0,0)
(1)画出将△ ABC向上平移1个单位长度,再向右平移5个单位长度后得到的△ A 1 B 1 C 1;
(2)画出将△ ABC绕原点 O顺时针方向旋转90°得到△ A 2 B 2 O;
(3)在 x轴上存在一点 P,满足点 P到 A 1与点 A 2距离之和最小,请直接写出 P点的坐标.
如图,在平面直角坐标系中,△ABC的顶点A(0,1),B(3,2),C(1,4)均在正方形网格的格点上.
(1)画出△ABC关于x轴的对称图形△A1B1C1;
(2)将△A1B1C1沿x轴方向向左平移3个单位后得到△A2B2C2,写出顶点A2,B2,C2的坐标.
试题篮
()