优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 平行线分线段成比例 / 解答题
初中数学

如图,直线y=k1x+b与反比例函数y=(x>0)的图象交于A(1,6),B(a,3)两点.

(1)求k1、k2的值.
(2)直接写出k1x+b﹣>0时x的取值范围;
(3)如图,等腰梯形OBCD中,BC∥OD,OB=CD,OD边在x轴上,过点C作CE⊥OD于点E,CE和反比例函数的图象交于点P,当梯形OBCD的面积为12时,请判断PC和PE的大小关系,并说明理由.

  • 题型:未知
  • 难度:未知

如图,直线分别交轴、轴于A、C两点,且与双曲线在第一象限交于点P,作PB⊥轴于B,

(1)直接写出点A、C的坐标;
(2)求双曲线的函数式

  • 题型:未知
  • 难度:未知

假期里,小红和小慧去买菜,三次购买的西红柿价格和数量如下表:

单价/(元/千克)
4
3
2
合计
小红购买的数量/千克
1
2
3
6
小慧购买的数量/千克
2
2
2
6

(1)小红和小慧购买西红柿数量的中位数是2,众数是2;
(2)从平均价格看,谁买的西红柿要便宜些.
小亮的说法
每次购买单价相同,购买总量也相同,平均价格应该也一样,都是(4+3+2)÷3=3(元/千克),所以两人购买的西红柿一样便宜.
小明的说法
购买的总量虽然相同,但小红花了16元,小慧花了18元,平均价格不一样,所以购买的西红柿便宜
思考小亮和小明的说法,你认为谁说得对?为什么?
(3)小明在直角坐标系中画出反比例函数的图象,图象经过点P(如图),点P的横、纵坐标分别为小红和小慧购买西红柿价格的平均数.
①求此反比例函数的关系式;
②判断点Q(2,5)是否在此函数图象上.

  • 题型:未知
  • 难度:未知

如图在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与反比例函数y=(m≠0)的图象交于第二、四象限内的A、B两点,与x轴交于C点,点B的坐标为(6,n).线段OA=5,E为x轴上一点,且sin ∠AOE=

(1)求该反比例函数和一次函数的解析式;
(2)求△AOB的面积;
(3)直接写出不等式﹤kx+b的x的取值范围.

  • 题型:未知
  • 难度:未知

A,B两地相距400km,甲车从A地出发,以60km/h的速度匀速行驶到B地,设甲车与B的路程为y(km),行驶的时间为x(h),求y关于x的函数解析式,并写出自变量x的取值范围.

  • 题型:未知
  • 难度:未知

已知反比例函数经过点(l,2). 
(1)求k的值;
(2)若反比例函数的图象经过点P(a,a-1),求a的值.

  • 题型:未知
  • 难度:未知

如图,矩形OABC的顶点A、C分别在x、y轴的正半轴上,点D为对角线OB的中点,点E(4,n)在边AB上,反比例函数(k≠0)在第一象限内的图象经过点D、E,且tan∠BOA=

(1)求边AB的长;
(2)求反比例函数的解析式和n的值;
(3)若反比例函数的图象与矩形的边BC交于点F,将矩形折叠,使点O与点F重合,折痕分别与x、y轴正半轴交于点H、G,求线段OG的长.

  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, C = 90 ° AC = 3 BC = 4 P BC 边上的动点(与 B C 不重合), PD / / AB ,交 AC 于点 D ,连接 AP ,设 CP = x ΔADP 的面积为 S

(1)用含 x 的代数式表示 AD 的长;

(2)求 S x 的函数表达式,并求当 S x 增大而减小时 x 的取值范围.

来源:2020年江苏省泰州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,矩形ABCD的顶点A、B分别在x轴、y轴上,AD=2AB,直线AB的解析式为y=-2x+4,双曲线y=(x>0)经过点D,与BC边相交于点E.

(1)填空:k=         
(2)连接AE、DE,试求△ADE的面积;
(3)在x轴上是否存在点P,使得△PCD的周长最小?若存在,求出点P坐标及此时△PCD周长的最小值;若不存在,请说明理由.

  • 题型:未知
  • 难度:未知

问题1:如图①,在 ΔABC 中, AB = 4 D AB 上一点(不与 A B 重合), DE / / BC ,交 AC 于点 E ,连接 CD .设 ΔABC 的面积为 S ΔDEC 的面积为 S '

(1)当 AD = 3 时, S ' S =   

(2)设 AD = m ,请你用含字母 m 的代数式表示 S ' S

问题2:如图②,在四边形 ABCD 中, AB = 4 AD / / BC AD = 1 2 BC E AB 上一点(不与 A B 重合), EF / / BC ,交 CD 于点 F ,连接 CE .设 AE = n ,四边形 ABCD 的面积为 S ΔEFC 的面积为 S ' .请你利用问题1的解法或结论,用含字母 n 的代数式表示 S ' S

来源:2018年江苏省苏州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,已知 AB CD O 的直径,过点 C O 的切线交 AB 的延长线于点 P O 的弦 DE AB 于点 F ,且 DF = EF

(1)求证: C O 2 = OF · OP

(2)连接 EB CD 于点 G ,过点 G GH AB 于点 H ,若 PC = 4 2 PB = 4 ,求 GH 的长.

来源:2018年四川省泸州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AC = BC ,点 F 从点 B 向点 C 运动,点 E 从点 A 沿射线 CA 方向运动,且 BF = AE ,连接 EF AB D

(1)如图1,当 AB = BC 时,求证: AB = 2 AD + BF

(2)如图2,当 AB = 2 3 BC 时,① AD = 6 BF = 15 2 ,则 AB =   

②过点 F FP AB 于点 P ,探究线段 AB AD FP 之间的数量关系,直接写出结论,不需证明.

来源:2016年辽宁省鞍山市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,正方形的边在正方形的边上,连接,过点,交于点.连接,其中于点

(1)求证:为等腰直角三角形.

(2)若,求的长.

来源:2019年山东省潍坊市中考数学试卷
  • 题型:未知
  • 难度:未知

已知一次函数(m为常数)的图象与反比例函数 (k为常数,)的图象相交于点 A(1,3).

(1)求这两个函数的解析式及其图象的另一交点的坐标;
(2)观察图象,写出使函数值的自变量的取值范围;

  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,直线l与x轴相交于点M,与y轴相交于点N,Rt△MON的外心为点A(,-2),反比例函数y=(x>0)的图象过点A.

(1)求直线l的解析式;
(2)在函数y=(x>0)的图象上取异于点A的一点B,作BC⊥x轴于点C,连接OB交直线l于点P.若△ONP的面积是△OBC面积的3倍,求点P的坐标.

  • 题型:未知
  • 难度:未知

初中数学平行线分线段成比例解答题