优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 相似多边形的性质
初中数学

如图所示,给出下列条件:①∠B=∠ACD;②∠ADC=∠ACB;③;④AC2=AD•AB,其中单独能够判定△ABC∽△ACD的有           

  • 题型:未知
  • 难度:未知

如图,一条河的两岸有一段是平行的,在河的南岸边每隔5米有一棵树,在北岸边每隔50米有一根电线杆.小丽站在离南岸边15米的点P处看北岸,发现北岸相邻的两根电线杆A、B,恰好被南岸的两棵树C、D遮住,并且在这两棵树之间还有三棵树,求河的宽度.

  • 题型:未知
  • 难度:未知

如图,小明从路灯下A处,向前走了5米到达D处,行走过程中,他的影子将会(只填序号)          .①越来越长,②越来越短,③长度不变.在D处发现自己在地面上的影子长DE是2米,如果小明的身高为1.7米,那么路灯离地面的高度AB是         米.

  • 题型:未知
  • 难度:未知

根据相似多边形的定义,我们把四个角分别相等,四条边成比例的两个凸四边形叫做相似四边形.相似四边形对应边的比叫做相似比.

(1)某同学在探究相似四边形的判定时,得到如下三个命题,请判断它们是否正确(直接在横线上填写"真"或"假" )

①四条边成比例的两个凸四边形相似; (   命题)

②三个角分别相等的两个凸四边形相似; (   命题)

③两个大小不同的正方形相似. (   命题)

(2)如图1,在四边形 ABCD 和四边形 A 1 B 1 C 1 D 1 中, ABC = A 1 B 1 C 1 BCD = B 1 C 1 D 1 AB A 1 B 1 = BC B 1 C 1 = CD C 1 D 1 .求证:四边形 ABCD 与四边形 A 1 B 1 C 1 D 1 相似.

(3)如图2,四边形 ABCD 中, AB / / CD AC BD 相交于点 O ,过点 O EF / / AB 分别交 AD BC 于点 E F .记四边形 ABFE 的面积为 S 1 ,四边形 EFCD 的面积为 S 2 ,若四边形 ABFE 与四边形 EFCD 相似,求 S 2 S 1 的值.

来源:2019年湖南省长沙市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在正方形ABCD中,E、F分别是边AD、CD上的点,,连接EF并延长交BC的延长线于点G.

(1)求证:△ABE∽△DEF;
(2)若正方形的边长为4,求BG的长.

  • 题型:未知
  • 难度:未知

如图,在Rt△ABC中,∠C=90°,点D是AB边上的一定点,点E是AC上的一个动点,若再增加一个条件就能使△ADE与△ABC相似,则这个条件可以是                             

  • 题型:未知
  • 难度:未知

如图所示,图中共有相似三角形(   )

A.5对 B.4对 C.3对 D.2对
  • 题型:未知
  • 难度:未知

如图,□ABCD中,E是CD的延长线上一点,BE与AD交于点F,

(1)求证:△ABF∽△CEB;
(2)若△DEF的面积为2,求□ABCD的面积.

  • 题型:未知
  • 难度:未知

如图,在△ABC中,,BD平分,且.求AB的值.

  • 题型:未知
  • 难度:未知

如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.

(1)求证:△ADF∽△DEC
(2)若AB=4,AD=3,AE=3,求AF的长.

  • 题型:未知
  • 难度:未知

如图,矩形 EFGH 的四个顶点分别在菱形 ABCD 的四条边上, BE = BF .将 ΔAEH ΔCFG 分别沿边 EH FG 折叠,当重叠部分为菱形且面积是菱形 ABCD 面积的 1 16 时,则 AE EB (    )

A. 5 3 B.2C. 5 2 D.4

来源:2017年浙江省台州市中考数学试卷
  • 题型:未知
  • 难度:未知

如果把两条直角边长分别为5,10的直角三角形按相似比 3 5 进行缩小,得到的直角三角形的面积是  

来源:2019年辽宁省抚顺市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在正方形网格中,每个小正方形的边长均相等.网格中三个多边形(分别标记为①,②,③ ) 的顶点均在格点上.被一个多边形覆盖的网格线中,竖直部分线段长度之和记为 m ,水平部分线段长度之和记为 n ,则这三个多边形中满足 m = n 的是 (    )

A.

只有②

B.

只有③

C.

②③

D.

①②③

来源:2016年江西省中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,直线AB与x轴,y轴分别交于点A(4,0),B(0,3).点C的坐标为(0,m),过点C作CE⊥AB于点E,点D为x轴正半轴的一动点,且满足OD=2OC,连结DE,以DE,DA为边作▱DEFA.

(1)当m=1时,求AE的长.
(2)当0<m<3时,若▱DEFA为矩形,求m的值;
(3)是否存在m的值,使得▱DEFA为菱形?若存在,直接写出m的值;若不存在,请说明理由.

  • 题型:未知
  • 难度:未知

如图,在△ABC中,D、E分别是AB、AC的中点,则△ADE与△ABC的面积比为             

  • 题型:未知
  • 难度:未知

初中数学相似多边形的性质试题