如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,△ABC的顶点都在格点上,建立平面直角坐标系.
(1)点A的坐标为 ,点C的坐标为 .
(2)将△ABC向左平移7个单位,请画出平移后的,若M为△ABC内的一点,其坐标为(,)则平移后点的坐标为 .
(3)以原点O为位似中心,将△ABC缩小,使变换后的与△ABC对应边的比为1:2,请在网格内画出一个,则的坐标为 .
发现问题:
如图(1),在ΔABC中,∠A=2∠B,且∠A=60°.
我们可以进行以下计算:
由题意可知:∠B=30°,∠C=90°,
可得到:c=2b,a=b,
所以a2-b2=(b)2-b2=2b2=b·c.
即a2-b2= bc.
提出猜想:
对于任意的ΔABC,当∠A=2∠B时,关系式a2-b2=bc都成立.
验证猜想:
(1)(验证特殊三角形)如图(2),请你参照上述研究方法,对等腰直角三角形进行验证,判断猜想是否正确,并写出验证过程;
已知:ΔABC中,∠A=2∠B,∠A=90°求证:a2-b2=bc.
(2)(验证一般三角形)如图(3),
已知:ΔABC中,∠A=2∠B,求证:a2-b2= bc.
结论应用:
若一个三角形的三边长恰为三个连续偶数,且∠A=2∠B,请直接写出这个三角形三边的长,不必说明理由.
如图,矩形 的四个顶点分别在菱形 的四条边上, .将 , 分别沿边 , 折叠,当重叠部分为菱形且面积是菱形 面积的 时,则 为
A. B.2C. D.4
如图,在正方形网格中,每个小正方形的边长均相等.网格中三个多边形(分别标记为①,②,③ 的顶点均在格点上.被一个多边形覆盖的网格线中,竖直部分线段长度之和记为 ,水平部分线段长度之和记为 ,则这三个多边形中满足 的是
A. |
只有② |
B. |
只有③ |
C. |
②③ |
D. |
①②③ |
如图,在平面直角坐标系中,直线AB与x轴,y轴分别交于点A(4,0),B(0,3).点C的坐标为(0,m),过点C作CE⊥AB于点E,点D为x轴正半轴的一动点,且满足OD=2OC,连结DE,以DE,DA为边作▱DEFA.
(1)当m=1时,求AE的长.
(2)当0<m<3时,若▱DEFA为矩形,求m的值;
(3)是否存在m的值,使得▱DEFA为菱形?若存在,直接写出m的值;若不存在,请说明理由.
如图,在△ABC中,D、E分别是AB、AC的中点,则△ADE与△ABC的面积比为 .
如图,在△ABC中,AD是角平分钱,点E在AC上,且∠EAD=∠ADE.
(1)求证:△DCE∽△BCA;
(2)若AB=3,AC=4.求DE的长.
在比例尺是1:8000的某市地图上,若一条路的长度约25cm,则它的实际长度约为______;对于地图上3cm×5cm的矩形广场相应的实际占地面积为_____平方千米.
试题篮
()