已知如图,是△的边上一点,∥,交边于点,延长至点,使,联结,交边于点,联结
(1)求证:;
(2)如果,求证:
已知:▱ABCD中,E是BA边延长线上一点,CE交对角线DB于点G,交AD边于点F.
求证:CG2=GF•GE.
如图,在等边△ABC中,D为BC边上一点,E为AC边上一点,且∠ADE=60°.
(1)求证:△ABD∽△DCE;
(2)若BD=3,CE=2,求△ABC的边长.
如图,已知,AB=AC,过点A作AG⊥BC,垂足为G,延长AG交BM于D,过点A做AN∥BM,过点C作EF∥AD,与射线AN、BM分别相交于点F、E。
(1)求证:△BCE∽△AGC;
(2)点P是射线AD上的一个动点,设AP=x,四边形ACEP的面积是y,若AF=5,。
①求y关于x的函数关系式,并写出定义域;
②当点P在射线AD上运动时,是否存在这样的点P,使得△CPE的周长为最小?若存在,求出此时y的值,若不存在,请说明理由。
(本题10分)如图13-1,为美化校园环境,某校计划在一块长为60米,宽为40米的长方形空地上修建一个长方形花圃,并将花圃四周余下的空地修建成同样宽的通道,设通道宽为米.
(1)用含的式子表示花圃的面积;
(2)如果通道所占面积是整个长方形空地面积的,求出此时通道的宽;
(3)若按上述要求施工,同时校长希望长方形花圃的形状与原长方形空地的形状相似,聪明的你想一想能不能满足校长的要求,若能,求出此时通道的宽;若不能,则说明理由。
如图(1),一正方形纸板ABCD的边长为4,对角线AC、BD交于点O,一块等腰直角三角形的三角板的一个顶点处于点O处,两边分别与线段AB、AD交于点E、F,设BE=.
(1)若三角板的直角顶点处于点O处,如图(2).判断三角形EOF的形状,并说明理由。
(2)在(1)的条件下,若三角形EOF的面积为S,求S关于x的函数关系式。
(3)若三角板的锐角顶点处于点O处,如图(3).
①若DF=,求关于的函数关系式,并写出自变量的取值范围;
②探究直线EF与正方形ABCD的内切圆的位置关系,并证明你的结论.
如图,在正方形中,分别是边上的点,连结并延长交的延长线于点
(1)求证:;
(2)若正方形ABCD的边长为8,求的长.
如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点.
(1)求证:=AB·AD;
(2)若AD=4,AB=6,求的值.
如图,□ABCD中,E是CD的延长线上一点,BE与AD交于点F,.
(1)求证:△ABF∽△CEB;
(2)若△DEF的面积为2,求□ABCD的面积.
(满分14分)如图,已知,,点从点开始沿边向点以的速度移动,点从点开始向点以相同的速度移动,若、同时出发,移动时间为(0≤≤6).
(1)设的面积为,求关于的函数解析式;
(2)当的面积最大时,沿直线翻折后得到,试判断点是否落在直线上,并说明理由.
(3)当为何值时,与相似.
已知:ΔABC在坐标平面内,三个顶点的坐标为A(0,3)、B(3,4)、C(2,2),(正方形网格中,每个小正方形边长为1个单位长度)
(1)画出ΔABC向下平移4个单位得到的ΔA1B1C1。
(2)以B为位似中心,在网格中画出ΔA2BC2,使ΔA2BC2与ΔABC位似,且位似比2 :1,直接写出C2点坐标是 。
(3)ΔA2BC2的面积是 平方单位。
如图,在□ABCD中,过点B作BE⊥CD,垂足为E,连接AE.F为AE上一点,且∠BFE=∠C.
⑴试说明:△ABF∽△EAD;
⑵若AB=8,BE=6,AD=7,求BF的长.
试题篮
()