我们把两条中线互相垂直的三角形称为“称为中垂三角形”,例如图1,图2,图3中,AF,BE是△ABC的中线,AF⊥BE,垂足为P,像△ABC这样的三角形均称为“中垂三角形”,设BC=a,AC=b,AB=c.
特例探索
(1)如图1,当∠ABE=45°,c=时,a= ,b= .
如图2,当∠ABE=30°,c=4时,a= ,b= .
归纳证明
(2)请你观察(1)中的计算结果,猜想,,三者之间的关系,用等式表示出来,并利用图3证明你发现的关系式.
拓展应用
(3)如图4,在▱ABCD中,点E、F、G分别是AD,BC,CD的中点,BE⊥EG,AD=,AB=3,求AF的长.
我们把两条中线互相垂直的三角形称为“中垂三角形”.例如图1,图2,图3中,AF,BE是△ABC的中线,AF⊥BE,垂足为P,像△ABC这样的三角形均为“中垂三角形”.设BC=a,AC=b,AB=c.
特例探索
(1)如图1,当∠ABE=45°,c=时,a= ,b= ;
如图2,当∠ABE=30°,c=4时,a= ,b= ;
归纳证明
(2)请你观察(1)中的计算结果,猜想a2,b2,c2三者之间的关系,用等式表示出来,请利用图3证明你发现的关系式;
拓展应用
(3)如图4,在□ABCD中,点E,F,G分别是AD,BC,CD的中点,BE⊥EG,AD=,AB=3.求AF的长.
如图,在平面直角坐标系xOy中,将抛物线的对称轴绕着点P(,2)顺时针旋转45°后与该抛物线交于A、B两点,点Q是该抛物线上的一点.
(1)求直线AB的函数表达式;
(2)如图①,若点Q在直线AB的下方,求点Q到直线AB的距离的最大值;
(3)如图②,若点Q在y轴左侧,且点T(0,t)(t<2)是直线PO上一点,当以P、B、Q为顶点的三角形与△PAT相似时,求所有满足条件的t的值.
如图,在平面直角坐标系
中,直线
与
轴交于点
,与
轴交于点
.抛物线
的对称轴是
且经过
、
两点,与
轴的另一交点为点
.
(1)①直接写出点
的坐标;②求抛物线解析式.
(2)若点
为直线
上方的抛物线上的一点,连接
.求
的面积的最大值,并求出此时点
的坐标.
(3)抛物线上是否存在点
,过点
作
垂直
轴于点
,使得以点
、
、
为顶点的三角形与
相似?若存在,求出点
的坐标;若不存在,请说明理由.
(本小题满分13分)
(1)操作发现:如图①,D是等边△ABC边BA上一动点(点D与点B不重合),连接DC,以DC为边在BC上方作等边△DCF,连接AF.直接写出线段AF与BD之间的数量关系.
(2)类比猜想:如图②,当△ABC为以BC为斜边的等腰直角三角形,D是△ABC边BA上一动点(点D 与点B不重合),连接DC,以DC为斜边在BC上方作等腰直角△FDC,连接AF.请直接写出它们的数量关系.
(3)深入探究:
Ⅰ.如图③,当△ABC为以BC为底边的等腰三角形,D是△ABC边BA上一动点(点D与点B不重合),连接DC,以DC为底边在BC上方作等腰△FDC,∠BC A=∠DCF,且∠B A C =,连接AF.线段AF与BD之间的有什么数量关系?证明你发现的结论;
Ⅱ.如图④,当△ABC为任意三角形,D是△ABC边BA上一动点(点D与点B不重合),连接DC,以DC为边在BC上方作△FDC∽△ABC,且,连接AF.线段AF与BD之间的有什么数量关系?直接写出你发现的结论.
在平面直角坐标系xOy中,⊙C的半径为r,P是与圆心C不重合的点,点P关于⊙C的反称点的定义如下:若在射线CP上存在一点P′,满足CP+CP′=2r.则称P′为点P关于⊙C的反称点,下图为点P及其关于⊙C的反称点P′的示意图.
特别地,当点P′与圆心C重合时,规定CP′=0.
(1)当⊙O的半径为1时.
①分別判断点M(2,1),,关于⊙O的反称点是否存在?若存在,求其坐标;
②点P在直线y=-x+2上,若点P关于⊙O的反称点P′存在,且点P′不在x袖上,求点P的横坐标的取值范围;
(2)⊙C的圆心在x袖上,半径为1,直线与x轴、y轴分別交于点A,B.若线段AB存在点P,使得点P关于⊙C的反称点P′在⊙C的内部,求圆心C的横坐标的取值范围.
(本题8分)已知锐角△ABC中,边BC长为12,高AD长为8
(1)如图,矩形EFGH的边GH在BC边上,其余两个顶点E、F分别在AB、AC边上,EF交AD于点K
①求的值
②设EH=x,矩形EFGH的面积为S,求S与x的函数关系式,并求S的最大值
(2)若ABAC,正方形PQMN的两个顶点在△ABC一边上,另两个顶点分别在△ABC的另两边上,直接写出正方形PQMN的边长.
(1)如图1,等腰Rt△ABO放在平面直角坐标系中, 点A,B 的坐标分别是A(0,1),B(1,0).在x轴正半轴上取D(m,0),在AD右上方作等腰Rt△ADE,∠ADE=.
①求出E点的坐标(可用含m的代数式表示);
②证明对于任意正数m,点E都在直线上;
(2)将(1)中的两个等腰直角三角形都改为有一个角为的直角三角形,如图22-2,A(0,),B(1,0).Rt△ADE中, ∠ADE=,∠AED=.D(m,0)是x轴正半轴上任意一点,则不论m取何正数,点E都在某一条直线上,请求出这条直线的函数关系式;
(3)将(2)中Rt△AOB保持不动,取点C(2, ),在x轴正半轴上取D(m,0)(m>2), 然后在AD右上方作Rt△CDE, ∠CDE=,∠CED=.当m取不同值时,点E是否还是总在一条直线上? 若是,请求出直线对应的函数关系式,若不是,请说明理由.
如图1,在平面直角坐标系中,已知点A(-6,0),点B(0,8),点C在y轴上,将△OAB沿直线AC对折,使点O落在边AB上的点D处.
(1)求直线AB、AC的解析式.
(2)如图2,过B作BE⊥AC,垂足为E,若F为AB边上一动点,是否存在点F,使C为△EOF内心,若存在,请求出F点坐标,若不存在,请说明理由.
已知抛物线经过A(1,0)、B(3,0)、C(0,3)三个点,
(1)求抛物线的解析式;
(2)如图(1),作△OBC的外接圆⊙Oˊ,D为BC上方半圆上一点,当tan∠COD=时,求OD的长;
(3)如图(2)直线y=x-2与抛物线交于E、F两点,与y轴交于点G,作y轴的平行线,分别与线段EF、抛物线交于P、Q两点(点P与E、F不重合),点K为射线PE上一点,当△PQK与△BAC相似时,求△PQK的最大面积。
如图①,P为△ABC内一点,连接PA、PB、PC,在△PAB、△PBC和△PAC中,如果存在一个三角形与△ABC相似,那么就称P为△ABC的自相似点.
(1)如图②,已知Rt△ABC中,∠ACB=90°,∠ACB>∠A,CD是AB上的中线,过点B作BE⊥CD,垂足为E,试说明E是△ABC的自相似点.
(2)如图③,在△ABC中,∠A<∠B<∠C.
①利用尺规作出△ABC的自相似点P(不写出作法,保留作图痕迹);
②如果△ABC的内心P是该三角形的自相似点,请直接写出该三角形三个内角的度数.
如图,在同一平面上,两块斜边相等的直角三角板Rt△ABC与Rt△ADC拼在一起,使斜边AC完全重合,且顶点B,D分别在AC的两旁,∠ABC=∠ADC=90°,∠CAD=30°,AB=BC=4cm.
(1)填空:AD= (cm),DC= (cm);
(2)点M,N分别从A点,C点同时以每秒1cm的速度等速出发,且分别在AD,CB上沿A→D,C→B的方向运动,当N点运动 到B点时,M,N两点同时停止运动,连结MN,求当M,N点运动了x秒时,点N到AD的距离(用含x的式子表示);
(3)在(2)的条件下,取DC中点P,连结MP,NP,设△PMN的面积为y(cm2),在整个运动过程中,△PMN的面积y存在最大值,请求出这个最大值.
(参考数据:sin75°=,sin15°=)
在平面直角坐标系xoy中, 一块含60°角的三角板作如图摆放,斜边AB在x轴上,直角顶点C在y轴正半轴上,已知点A(-1,0).
(1)请直接写出点B、C的坐标:B( , )、C( , );并求经过A、B、C三点的抛物线解析式;
(2)现有与上述三角板完全一样的三角板DEF(其中∠EDF=90°,∠DEF=60°),把顶点E放在线段AB上(点E是不与A、B两点重合的动点),并使ED所在直线经过点C.此时,EF所在直线与(1)中的抛物线交于第一象限的点M.
①设AE=x,当x为何值时,△OCE∽△OBC;
②在①被满足的情况下探究:抛物线的对称轴上是否存在点P使△PEM是等腰三角形,若存在,请求出点P的坐标;若不存在,请说明理由.
如图①,△ABC与△DEF都是等腰直角三角形,∠ACB=∠EDF=90°,且点D在AB边上,AB、EF的中点均为O,连结BF、CD、CO,显然点C、F、O在同一条直线上,可以证明△BOF≌△COD,则BF=CD.
解决问题
(1)将图①中的Rt△DEF绕点O旋转得到图②,猜想此时线段BF与CD的数量关系,并证明你的结论;
(2)如图③,若△ABC与△DEF都是等边三角形,AB、EF的中点均为O,上述(1)中的结论仍然成立吗?如果成立,请说明理由;如不成立,请求出BF与CD之间的数量关系;
(3)如图④,若△ABC与△DEF都是等腰三角形,AB、EF的中点均为0,且顶角∠ACB=∠EDF=α,请直接写出的值(用含α的式子表示出来)
如图,矩形ABCD中,P是边AD上的一动点,连接BP、CP,过点B作射线交线段CP的延长线于点E,交AD边于点M,且使得∠ABE=∠CBP,如果AB=2,BC=5,AP=x,PM=y.
(1)说明△ABM∽△APB;并求出y关于x的函数关系式,写出自变量x的取值范围;
(2)当AP=4时,求sin∠EBP的值;
(3)如果△EBC是以∠EBC为底角的等腰三角形,求AP的长。
试题篮
()