优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 相似多边形的性质 / 解答题
初中数学

如图,在的正方形网格中,△OAB的顶点分别为O(0,0),A(1,2),B(2,-1).

(1)以点O(0,0)为位似中心,按比例尺(OA︰OA’)1:3在位似中心的同侧将△OAB放大为△OA’B’,放大后点A、B的对应点分别为A’、B’ .画出△OA’B’,并写出点A’、B’的坐标:A’(       ),B’(           );
(2)在(1)中,若为线段上任一点,写出变化后点的对应点的坐标(        ).

  • 题型:未知
  • 难度:未知

如图,是一个照相机成像的示意图.

(1)如果像高MN是35mm,焦距是50mm,拍摄的景物高度AB是4.9m,拍摄点离景物有多远?
(2)如果要完整的拍摄高度是2m的景物,拍摄点离景物有4m,像高不变,则相机的焦距应调整为多少?

  • 题型:未知
  • 难度:未知

如图所示,图中的小方格都是边长为1的正方形,△ABC与△A′B′C′是以 点O为位似中心的位似图形,它们的顶点都在小正方形的顶点上. 

(1)画出位似中心点O; 
(2)直接写出△ABC与△A’B’C’的位似比            ; 
(3)以位似中心O为坐标原点,以格线所在直线为坐标轴建立平面直角坐标系,画出△A′B′C′关于点 O中心对称的△A"B"C",如果△ABC内部一点M的坐标为(x,y),写出△A"B"C"中M的对应点M"的坐标             

  • 题型:未知
  • 难度:未知

请在图中补全坐标系及缺失的部分,并在横线上写恰当的内容。图中各点坐标如下:A(1,0),B(6,0),C(1,3),D(6,2)。线段AB上有一点M,使△ACM∽△BDM,且相似比不等于1。求出点M的坐标并证明你的结论。

解:M(      
证明:∵CA⊥AB,DB⊥AB,∴∠CAM=∠DBM=   度。
∵CA=AM=3,DB=BM=2,∴∠ACM=∠AMC(   ),∠BDM=∠BMD(同理),
∴∠ACM= (180°-   ) =45°。 ∠BDM=45°(同理)。
∴∠ACM=∠BDM。
在△ACM与△BDM中,
∴△ACM∽△BDM(如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似)。

  • 题型:未知
  • 难度:未知

如图,四边形ABCD是矩形,AB=3,AD=4,直线PS分别交AB、CD的延长线于P、S,交BC、AC、AD于Q、E、R,BP=1,DS=2.

(1)写出图中相似三角形(不含全等三角形);
(2)请找出图中除AB=CD、BC=AD以外的相等线段,并证明你的判断.
(3)求四边形ABQR与四边形CQRD的面积比.

  • 题型:未知
  • 难度:未知

已知点P为线段AB的黄金分割点(AP>BP),且AB=2,求BP的长.

  • 题型:未知
  • 难度:未知

如图,AB是⊙O的直径,AC是弦,直线EF经过点C,AD⊥EF于点D,∠DAC=∠BAC.

(1)求证:EF是⊙O的切线;
(2)求证:AC2=AD·AB;
(3)若⊙O的半径为2,∠ACD=300,求图中阴影部分的面积.

  • 题型:未知
  • 难度:未知

如图,矩形ABCD中,以对角线BD为一边构造一个矩形BDEF,使得另一边EF过原矩形的顶点C.

(1)设Rt△CBD的面积为S1, Rt△BFC的面积为S2, Rt△DCE的面积为S3 , 则S1       S2+ S3(用“>”、“=”、“<”填空);
(2)写出图中的三对相似三角形,并选择其中一对进行证明.

  • 题型:未知
  • 难度:未知

如图,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm.动点M从点B出发,在BA边上以每秒3cm的速度向定点A运动,同时动点N从点C出发,在CB边上以每秒2cm的速度向点B运动,运动时间为t秒(0<t<),连接MN.

(1)若△BMN与△ABC相似,求t的值;
(2)连接AN,CM,若AN⊥CM,求t的值.

  • 题型:未知
  • 难度:未知

问题提出
如图①,已知直线l与线段AB平行,试只用直尺作出AB的中点.
初步探索
如图②,在直线l的上方取一个点E,连接EA.EB,分别与l交于点M、N,连接MB.NA,交于点D,再连接ED并延长交AB于点C,则C就是线段AB 的中点.
推理验证
利用图形相似的知识,我们可以推理验证AC=CB.
(1)若线段A.B.C.d长度均不为0,则由下列比例式中,一定可以得出b=d的是
A.      B.      C.       D.
(2)由MN∥AB,可以推出△EFN∽△ECB,△EMN∽△EAB,△MND∽△BAD,△FND∽△CAD.
所以,有
所以,AC=CB.
拓展研究
如图③,△ABC中,D是BC的中点,点P在AB上.
(3)在图③中只用直尺作直线l∥BC.
(4)求证:l∥BC.

  • 题型:未知
  • 难度:未知

如图,已知正方形ABCD,点E是边AB上一点,点O是线段AE上的一个动点(不与A、E重合),以O为圆心,OB为半径的圆与边AD相交于点M,过点M作⊙O的切线交DC于点N,连结OM、ON、BM、BN.

(1)求证:△AOM∽△DMN;
(2)求∠MBN的度数.

  • 题型:未知
  • 难度:未知

如图,在矩形ABCD中,AB=9,AD=12.动点E从点B出发,沿线段BC(不包括端点B、C)以每秒2个单位长度的速度,匀速向点C运动;动点F从点C出发,沿线段CD(不包括端点C、D)以每秒1个单位长度的速度,匀速向点D运动;点E、F同时出发,同时停止.连接AF并延长交BC的延长线于点M,再把AM沿AD翻折交CD延长线于点N,连接MN.设运动时间为t秒.

(1)当t为何值时,△ABE∽△ECF;
(2)在点E运动的过程中是否存在某个时刻使AE⊥AN?若存在请求出t的值,若不存在请说明理由;
(3)在运动的过程中,△AMN的面积是否变化?如果改变,求出变化的范围;如果不变,求出它的值.

  • 题型:未知
  • 难度:未知

(本题10分)如图13-1,为美化校园环境,某校计划在一块长为60米,宽为40米的长方形空地上修建一个长方形花圃,并将花圃四周余下的空地修建成同样宽的通道,设通道宽为米.
(1)用含的式子表示花圃的面积;
(2)如果通道所占面积是整个长方形空地面积的,求出此时通道的宽;
(3)若按上述要求施工,同时校长希望长方形花圃的形状与原长方形空地的形状相似,聪明的你想一想能不能满足校长的要求,若能,求出此时通道的宽;若不能,则说明理由。

  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,已知OA=12cm,OB=6cm,点P从O点开始沿OA边向点A以1cm/s的速度移动,点Q从点B开始沿BO边向点O以1cm/s的速度移动,如果P、Q同时出发,用t(单位:秒)表示移动的时间(0≤t≤6),那么:

(1)当t为何值时,△POQ与△AOB相似?
(2)设△POQ的面积为y,求y关于t的函数关系式.

  • 题型:未知
  • 难度:未知

如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为点E,连接DE,点F为线段DE上一点,且∠AFE=∠B.

(1)求证:△ADF∽△DEC;
(2)若AB=8,AD=6,AF=4,求AE的长.

  • 题型:未知
  • 难度:未知

初中数学相似多边形的性质解答题