如图,在矩形ABCD中,AB=3cm,AD=4cm,点E是BC上一动点(不与B、C重合),且DF⊥AE,垂足为F. 设AE=xcm,DF=ycm.
(1)求证:△DFA∽△ABE;
(2)试求y与x之间的函数关系式,并求出自变量的取值范围.
如图,在△ABC和△ADE中,∠BAD=∠CAE,∠ABC=∠ADE。
写出图中两对相似三角形(不得添加辅助线);
请分别说明两对三角形相似的理由。
如图,△ABC中,已知∠BAC=45°,AD⊥BC于D,BD=4㎝,DC=6㎝,试求AD的长. 小萍同学灵活运用轴对称知识,将图形进行翻折变换,巧妙地解答了此题。请按照小萍的思路,探究并解答下列问题:
分别以AB、AC所在的直线为对称轴,画出△ABD、△ACD的轴对称图形,D点的对称点分别为点E、F,延长EB、FC相交于G点,试证明四边形AEGF是正方形;
设AD=x㎝,联系(1)的结论,试求出AD的长;
在直角梯形ABCD中,AB∥DC,AB⊥BC,∠A=60°,AB=2CD,E、F分别为AB、AD的中点,连结EF、EC、BF、CF.
判断四边形AECD的形状(不证明);
在不添加其它条件下,写出图中一对全等的三角形,用符号“≌”表示,并证明。
若CD=2,求梯形ABCD的面积。
(本小题满分12分)
如图(1),△ABC与△EFD为等腰直角三角形,AC与DE重合,AB=EF=9,∠BAC=∠DEF=90°,固定△ABC,将△EFD绕点A 顺时针旋转,当DF边与AB边重合时,旋转中止。不考虑旋转开始和结束时重合的情况,设DE、DF(或它们的延长线)分别交BC(或它的延长线)于G、H点,如图(2)。
(1)问:始终与△AGC相似的三角形有 及 ;
(2)设CG=x,BH=y,求y关于x的函数关系式(只要求根据2的情况说明理由);
(3)问:当x为何值时,△AGH是等腰三角形?
(本小题满分12分)某班同学到野外活动,为测量一池塘两端A、B的距离,设计了几种方案,下面介绍两种:(I)如图(1),先在平地取一个可以直接到达A、B的点C,并分别延长AC到D,BC到E,使DC=AC,BC=EC,最后测出DE的距离即为AB的长。(II)如图(2),先过B点作AB的垂线BF,再在BF上取C、D两点,使BC=CD,接着过点D作BD的垂线DE,交AC的延长线于E,则测出DE的长即为AB的距离。阅读后回答下列问题:
(1)方案(I)是否可行?为什么?
(2)方案(II)是否切实可行?为什么?
(3)方案(II)中作BF⊥AB,ED⊥BF的目的是 ;若仅满足∠ABD=∠BDE≠90°,方案(II)是否成立?
(4)方案(II)中,若使BC=n·CD,能否测得(或求出)AB的长?理由是 ,若ED=m,则AB= 。
(本小题满分8分)在直角坐标系中,已知点A(-2,0)、B(0,4)、C(0,3),过点C作直线交x轴于点D,使得以 D、O、C为顶点的三角形与△AOB相似,求点D的坐标。
(本小题满分6分)如图,在△ABC和△ADE中,∠BAD=∠CAE,∠ABC=∠ADE。
(1)写出图中两对相似三角形(不得添加辅助线);
(2)请分别说明两对三角形相似的理由。
如图,在直角梯形ABCD中,AD∥BC,∠C=90°,BC=16,DC=12,AD=21。动点P从点D出发,沿射线DA的方向以每秒2两个单位长的速度运动,动点Q从点C出发,在线段CB上以每秒1个单位长的速度向点B运动,点P,Q分别从点D,C同时出发,当点Q运动到点B时,点P随之停止运动。设运动的时间为t(秒).
设△BPQ的面积为S,求S与t之间的函数关系式
当线段PQ与线段AB相交于点O,且2AO=OB时,求t的值.
当t为何值时,以B,P,Q三点为顶点的三角形是等腰三角形?
是否存在时刻t,使得PQ⊥BD?若存在,求出t的值;若不存在,请说明理由.
右图中,ABCD是梯形,面积是1。已知=,=,=。问:
(1) 三角形ECD的面积是多少?
(2) 四边形EHFG的面积是多少?
如图(1),在⊿ABC中,AE=EB,AF=FC,则EF与BC存在以下关系:EF∥BC, ;将AC沿BC方向平移到DH,得图(2),沿CB方向平移到DH得图(3),图(2)中AD与BH存在关系:EF∥AD, ;,那么在图(3)中是否有类似于图(1)(2)中的结论,请把猜想的结论填在方框内,并就图(3)的结论加以证明。
试题篮
()