如图,AC是矩形ABCD的对角线,AB=2,BC=,点E、F分别是线段AB,AD上的点,连接CE,CF,当∠BCE=∠ACF,且CE=CF时,AE+AF=______.
已知△ABC∽△DEF,若△ABC与△DEF的相似比为2:3,则△ABC与△DEF对应边上的中线的比为________.
以下四个命题:
①若一个角的两边和另一个角的两边分别互相垂直,则这两个角互补.
②边数相等的两个正多边形一定相似.
③等腰三角形ABC中, D是底边BC上一点, E是一腰AC上的一点,若∠BAD=60°且AD=AE,则∠EDC=30°.
④任意三角形的外接圆的圆心一定是三角形三条边的垂直平分线的交点.
其中正确命题的序号为__________.
如图,已知∠1=∠2,若再增加一个条件就能使结论“AB•DE=AD•BC”成立,则这个条件可以是_______.(只填一个即可)
如图,在平面直角坐标系中,边长不等的正方形依次排列,每个正方形都有一个顶点落在函数的图象上,从左向右第3个正方形中的一个顶点A的坐标为(27,9),阴影三角形部分的面积从左向右依次记为S1、S2、S3、…、Sn,则第4个正方形的边长是 , S3的值为 .
在综合实践课上,小明同学设计了如图测河塘宽AB的方案:在河塘外选一点O,连结AO,BO,测得m,m,延长AO,BO分别到D,C两点,使m,m,又测得m,则河塘宽AB= m.
已知女排赛场球网的高度是米,某排球运动员在一次扣球时,球恰好擦网而过,落在对方场地距离球网米的位置上,此时该运动员距离球网米,假设此次排球的运行路线是直线,则该运动员击球的高度是 米.
如图,在等边△ABC中,D为BC边上一点,E为AC边上一点,且∠ADE=60°,BD=3,CE=2,则等边△ABC的边长为 .
如图,点E是四边形ABCD的对角线BD上一点,且.从图中找出2对相似三角形,它们是 ; .
新定义:平行于三角形一边的直线被其他两边所截得的线段叫做“三角形的弦”.已知等边三角形的一条弦的长度为2cm,且这条弦将等边三角形分成面积相等的两个部分,那么这个等边三角形的边长为 cm.
试题篮
()