优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 相似三角形的判定与性质 / 解答题
初中数学

如图,在 ΔABC 中, AB = BC ,以 ΔABC 的边 AB 为直径作 O ,交 AC 于点 D ,过点 D DE BC ,垂足为点 E

(1)试证明 DE O 的切线;

(2)若 O 的半径为5, AC = 6 10 ,求此时 DE 的长.

来源:2020年山东省聊城市中考数学试卷
  • 题型:未知
  • 难度:未知

如图1,四边形 ABCD 的对角线 AC BD 相交于点 O OA = OC OB = OD + CD

(1)过点 A AE / / DC BD 于点 E ,求证: AE = BE

(2)如图2,将 ΔABD 沿 AB 翻折得到 ΔAB D '

①求证: B D ' / / CD

②若 A D ' / / BC ,求证: C D 2 = 2 OD · BD

来源:2020年山东省菏泽市中考数学试卷
  • 题型:未知
  • 难度:未知

问题探究:

小红遇到这样一个问题:如图1, ΔABC 中, AB = 6 AC = 4 AD 是中线,求 AD 的取值范围.她的做法是:延长 AD E ,使 DE = AD ,连接 BE ,证明 ΔBED ΔCAD ,经过推理和计算使问题得到解决.

请回答:(1)小红证明 ΔBED ΔCAD 的判定定理是:   

(2) AD 的取值范围是  

方法运用:

(3)如图2, AD ΔABC 的中线,在 AD 上取一点 F ,连结 BF 并延长交 AC 于点 E ,使 AE = EF ,求证: BF = AC

(4)如图3,在矩形 ABCD 中, AB BC = 1 2 ,在 BD 上取一点 F ,以 BF 为斜边作 Rt Δ BEF ,且 EF BE = 1 2 ,点 G DF 的中点,连接 EG CG ,求证: EG = CG

来源:2020年山东省德州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,点 C 在以 AB 为直径的 O 上,点 D 是半圆 AB 的中点,连接 AC BC AD BD .过点 D DH / / AB CB 的延长线于点 H

(1)求证:直线 DH O 的切线;

(2)若 AB = 10 BC = 6 ,求 AD BH 的长.

来源:2020年山东省德州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, ACB = 90 ° ,将 ΔABC 沿直线 AB 翻折得到 ΔABD ,连接 CD AB 于点 M E 是线段 CM 上的点,连接 BE F ΔBDE 的外接圆与 AD 的另一个交点,连接 EF BF

(1)求证: ΔBEF 是直角三角形;

(2)求证: ΔBEF ΔBCA

(3)当 AB = 6 BC = m 时,在线段 CM 上存在点 E ,使得 EF AB 互相平分,求 m 的值.

来源:2020年浙江省台州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, ΔABC 内接于 O AB O 的直径, AB = 10 AC = 6 ,连结 OC ,弦 AD 分别交 OC BC 于点 E F ,其中点 E AD 的中点.

(1)求证: CAD = CBA

(2)求 OE 的长.

来源:2020年浙江省衢州市中考数学试卷
  • 题型:未知
  • 难度:未知

【基础巩固】

(1)如图1,在 ΔABC 中, D AB 上一点, ACD = B .求证: A C 2 = AD · AB

【尝试应用】

(2)如图2,在 ABCD 中, E BC 上一点, F CD 延长线上一点, BFE = A .若 BF = 4 BE = 3 ,求 AD 的长.

【拓展提高】

(3)如图3,在菱形 ABCD 中, E AB 上一点, F ΔABC 内一点, EF / / AC AC = 2 EF EDF = 1 2 BAD AE = 2 DF = 5 ,求菱形 ABCD 的边长.

来源:2020年浙江省宁波市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AB = 4 2 B = 45 ° C = 60 °

(1)求 BC 边上的高线长.

(2)点 E 为线段 AB 的中点,点 F 在边 AC 上,连结 EF ,沿 EF ΔAEF 折叠得到 ΔPEF

①如图2,当点 P 落在 BC 上时,求 AEP 的度数.

②如图3,连结 AP ,当 PF AC 时,求 AP 的长.

来源:2020年浙江省金华市中考数学试卷
  • 题型:未知
  • 难度:未知

已知在 ΔABC 中, AC = BC = m D AB 边上的一点,将 B 沿着过点 D 的直线折叠,使点 B 落在 AC 边的点 P 处(不与点 A C 重合),折痕交 BC 边于点 E

(1)特例感知 如图1,若 C = 60 ° D AB 的中点,求证: AP = 1 2 AC

(2)变式求异 如图2,若 C = 90 ° m = 6 2 AD = 7 ,过点 D DH AC 于点 H ,求 DH AP 的长;

(3)化归探究 如图3,若 m = 10 AB = 12 ,且当 AD = a 时,存在两次不同的折叠,使点 B 落在 AC 边上两个不同的位置,请直接写出 a 的取值范围.

来源:2020年浙江省湖州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在正方形 ABCD 中,点 E BC 边上,连接 AE DAE 的平分线 AG CD 边交于点 G ,与 BC 的延长线交于点 F .设 CE EB = λ ( λ > 0 )

(1)若 AB = 2 λ = 1 ,求线段 CF 的长.

(2)连接 EG ,若 EG AF

①求证:点 G CD 边的中点.

②求 λ 的值.

来源:2020年浙江省杭州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中,点 D E F 分别在 AB BC AC 边上, DE / / AC EF / / AB

(1)求证: ΔBDE ΔEFC

(2)设 AF FC = 1 2

①若 BC = 12 ,求线段 BE 的长;

②若 ΔEFC 的面积是20,求 ΔABC 的面积.

来源:2020年浙江省杭州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, C 为线段 AB 外一点.

(1)求作四边形 ABCD ,使得 CD / / AB ,且 CD = 2 AB ;(要求:尺规作图,不写作法,保留作图痕迹)

(2)在(1)的四边形 ABCD 中, AC BD 相交于点 P AB CD 的中点分别为 M N ,求证: M P N 三点在同一条直线上.

来源:2020年福建省中考数学试卷
  • 题型:未知
  • 难度:未知

四边形 ABCD 是边长为2的正方形, E AB 的中点,连结 DE ,点 F 是射线 BC 上一动点(不与点 B 重合),连结 AF ,交 DE 于点 G

(1)如图1,当点 F BC 边的中点时,求证: ΔABF ΔDAE

(2)如图2,当点 F 与点 C 重合时,求 AG 的长;

(3)在点 F 运动的过程中,当线段 BF 为何值时, AG = AE ?请说明理由.

来源:2020年海南省中考数学试卷
  • 题型:未知
  • 难度:未知

如图,四边形 ABCD 是菱形,点 H 为对角线 AC 的中点,点 E AB 的延长线上, CE AB ,垂足为 E ,点 F AD 的延长线上, CF AD ,垂足为 F

(1)若 BAD = 60 ° ,求证:四边形 CEHF 是菱形;

(2)若 CE = 4 ΔACE 的面积为16,求菱形 ABCD 的面积.

来源:2020年云南省中考数学试卷
  • 题型:未知
  • 难度:未知

如图, AB O 的直径, C O 上一点, AD CE ,垂足为 D AC 平分 DAB

(1)求证: CE O 的切线;

(2)若 AD = 4 cos CAB = 4 5 ,求 AB 的长.

来源:2020年云南省中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学相似三角形的判定与性质解答题