优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 相似三角形的判定与性质 / 解答题
初中数学

如图,四边形 ABCD 内接于 O AC O 的直径, AC BD 交于点 E PB O 于点 B

(1)求证: PBA = OBC

(2)若 PBA = 20 ° ACD = 40 ° ,求证: ΔOAB ΔCDE

来源:2021年江苏省无锡市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, AC BD 交于点 O OA = OD ABO = DCO E BC 延长线上一点,过点 E EF / / CD ,交 BD 的延长线于点 F

(1)求证 ΔAOB ΔDOC

(2)若 AB = 2 BC = 3 CE = 1 ,求 EF 的长.

来源:2021年江苏省南京市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, Rt Δ ABC 中, ABC = 90 ° ,以点 C 为圆心, CB 为半径作 C D C 上一点,连接 AD CD AB = AD AC 平分 BAD

(1)求证: AD C 的切线;

(2)延长 AD BC 相交于点 E ,若 S ΔEDC = 2 S ΔABC ,求 tan BAC 的值.

来源:2021年江苏省连云港市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在菱形 ABCD 中,对角线 AC BD 相交于点 O AC = 4 BD = 8 ,点 E 在边 AD 上, AE = 1 3 AD ,连结 BE AC 于点 M

(1)求 AM 的长.

(2) tan MBO 的值为   

来源:2021年吉林省长春市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,点 A 在以 BC 为直径的 O 上, ABC 的角平分线与 AC 相交于点 E ,与 O 相交于点 D ,延长 CA M ,连结 BM ,使得 MB = ME ,过点 A BM 的平行线与 CD 的延长线交于点 N

(1)求证: BM O 相切;

(2)试给出 AC AD CN 之间的数量关系,并予以证明.

来源:2021年湖南省娄底市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在半径为 5 cm O 中, AB O 的直径, CD 是过 O 上一点 C 的直线,且 AD DC 于点 D AC 平分 BAD E BC 的中点, OE = 3 cm

(1)求证: CD O 的切线;

(2)求 AD 的长.

来源:2021年湖南省怀化市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, ABC = 90 ° ,以 AB 的中点 O 为圆心, AB 为直径的圆交 AC D E BC 的中点, DE BA 的延长线于 F

(1)求证: FD 是圆 O 的切线:

(2)若 BC = 4 FB = 8 ,求 AB 的长.

来源:2021年湖南省常德市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ AOB 中, AO BO AB y 轴, O 为坐标原点, A 的坐标为 ( n , 3 ) ,反比例函数 y 1 = k 1 x 的图象的一支过 A 点,反比例函数 y 2 = k 2 x 的图象的一支过 B 点,过 A AH x 轴于 H ,若 ΔAOH 的面积为 3 2

(1)求 n 的值;

(2)求反比例函数 y 2 的解析式.

来源:2021年湖南省常德市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,已知AB是⊙O的直径,⊙O经过 Rt ACD 的直角边DC上的点F,交AC边于点E,点F是弧EB的中点, C 90 ° ,连接AF

(1)求证:直线CD是⊙O切线.

(2)若 BD 2 OB 4 ,求 tan AFC 的值.

来源:2020年贵州省黔南州中考数学试卷
  • 题型:未知
  • 难度:未知

古希腊数学家毕达哥拉斯认为:“一切平面图形中最美的圆”,请研究如下美丽的圆,如图, Rt ABC 中, BCA 90 ° AC 3 BC 4 ,点O在线段 BC 上,且 OC = 3 2 ,以O为圆心. OC 为半径的 O 交线段AO于点D,交线段AO的延长线于点E

(1)求证: AB O 的切线;

(2)研究过短中,小明同学发现 AC AE = AD AC ,回答小明同学发现的结论是否正确?如果正确,给出证明;如果不正确,说明理由.

来源:2020年贵州省黔南州中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 ABCD 中, DE AC 于点O,交BC于点E EG EC GF AD DE于点F,连接 FC ,点H为线段 AO 上一点,连接 HD HF

(1)判断四边形 GECF 的形状,并说明理由;

(2)当 DHF HAD 时,求证: AH CH EC AD

来源:2020年甘肃省兰州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, ΔABC 内接于 O AD 平分 BAC BC 边于点 E ,交 O 于点 D ,过点 A AF BC 于点 F ,设 O 的半径为 R AF = h

(1)过点 D 作直线 MN / / BC ,求证: MN O 的切线;

(2)求证: AB · AC = 2 R · h

(3)设 BAC = 2 α ,求 AB + AC AD 的值(用含 α 的代数式表示).

来源:2020年山东省淄博市中考数学试卷
  • 题型:未知
  • 难度:未知

ΔABC 中, ACB = 90 ° CD 是中线, AC = BC ,一个以点 D 为顶点的 45 ° 角绕点 D 旋转,使角的两边分别与 AC BC 的延长线相交,交点分别为点 E F DF AC 交于点 M DE BC 交于点 N

(1)如图1,若 CE = CF ,求证: DE = DF

(2)如图2,在 EDF 绕点 D 旋转的过程中,试证明 C D 2 = CE · CF 恒成立;

(3)若 CD = 2 CF = 2 ,求 DN 的长.

来源:2020年山东省枣庄市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AB = AC ,以 AB 为直径的 O 分别交 AC BC 于点 D E ,点 F AC 的延长线上,且 BAC = 2 CBF

(1)求证: BF O 的切线;

(2)若 O 的直径为4, CF = 6 ,求 tan CBF

来源:2020年山东省枣庄市中考数学试卷
  • 题型:未知
  • 难度:未知

小明将两个直角三角形纸片如图(1)那样拼放在同一平面上,抽象出如图(2)的平面图形, ACB ECD 恰好为对顶角, ABC = CDE = 90 ° ,连接 BD AB = BD ,点 F 是线段 CE 上一点.

探究发现:

(1)当点 F 为线段 CE 的中点时,连接 DF (如图(2) ) ,小明经过探究,得到结论: BD DF .你认为此结论是否成立?    .(填"是"或"否" )

拓展延伸:

(2)将(1)中的条件与结论互换,即: BD DF ,则点 F 为线段 CE 的中点.请判断此结论是否成立.若成立,请写出证明过程;若不成立,请说明理由.

问题解决:

(3)若 AB = 6 CE = 9 ,求 AD 的长.

来源:2020年山东省泰安市中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学相似三角形的判定与性质解答题