如图,在平面直角坐标系中,矩形 的边 在 轴上, 、 的长分别是一元二次方程 的两个根 , ,边 交 轴于点 ,动点 以每秒1个单位长度的速度,从点 出发沿折线段 向点 运动,运动的时间为 秒,设 与矩形 重叠部分的面积为 .
(1)求点 的坐标;
(2)求 关于 的函数关系式,并写出自变量的取值范围;
(3)在点 的运动过程中,是否存在点 ,使 为等腰三角形?若存在,直接写出点 的坐标;若不存在,请说明理由.
已知: 、 两点在直线 的同一侧,线段 , 均是直线 的垂线段,且 在 的右边, ,将 沿直线 向右平移,在平移过程中,始终保持 不变, 边与直线 相交于点 .
(1)当 与 重合时(如图2所示),设点 是 的中点,连接 .求证:四边形 是正方形;
(2)请利用如图1所示的情形,求证: ;
(3)若 ,且当 时,请直接写出 和 的长.
如图,在菱形 中, 与 交于点 , 是 上一点, , ,过点 作 的垂线,交 的延长线于点 .
(1) 和 是否相等?若相等,请证明;若不相等,请说明理由;
(2)找出图中与 相似的三角形,并证明;
(3) 的延长线交 的延长线于点 ,交 于点 .求证: .
如图,抛物线 与 轴交于 、 两点,抛物线上另有一点 在 轴下方,且使 .
(1)求线段 的长度;
(2)设直线 与 轴交于点 ,点 是 的中点时,求直线 和抛物线的解析式;
(3)在(2)的条件下,直线 下方抛物线上是否存在一点 ,使得四边形 面积最大?若存在,请求出点 的坐标;若不存在,请说明理由.
如图1,经过原点 的抛物线 与 轴交于另一点 , ,在第一象限内与直线 交于点 .
(1)求这条抛物线的表达式;
(2)在第四象限内的抛物线上有一点 ,满足以 , , 为顶点的三角形的面积为2,求点 的坐标;
(3)如图2,若点 在这条抛物线上,且 ,在(2)的条件下,是否存在点 ,使得 ?若存在,求出点 的坐标;若不存在,请说明理由.
定义:点 是 内部或边上的点(顶点除外),在 , , 中,若至少有一个三角形与 相似,则称点 是 的自相似点.
例如:如图1,点 在 的内部, , ,则 ,故点 是 的自相似点.
请你运用所学知识,结合上述材料,解决下列问题:
在平面直角坐标系中,点 是曲线 上的任意一点,点 是 轴正半轴上的任意一点.
(1)如图2,点 是 上一点, ,试说明点 是 的自相似点;当点 的坐标是 , ,点 的坐标是 , 时,求点 的坐标;
(2)如图3,当点 的坐标是 ,点 的坐标是 时,求 的自相似点的坐标;
(3)是否存在点 和点 ,使 无自相似点?若存在,请直接写出这两点的坐标;若不存在,请说明理由.
如图,直线 、 为常数)分别与 轴、 轴交于点 、 ,抛物线 与 轴交于点 .
(1)求直线 的函数解析式;
(2)若点 是抛物线 上的任意一点,设点 到直线 的距离为 ,求 关于 的函数解析式,并求 取最小值时点 的坐标;
(3)若点 在抛物线 的对称轴上移动,点 在直线 上移动,求 的最小值.
如图,抛物线 经过点 ,点 ,作 轴交抛物线于点 ,作 轴,垂足为 ,动点 从点 出发在线段 上以每秒2个单位长度的速度向点 运动,同时动点 从点 出发在线段 上以每秒1个单位长度的速度向点 运动,当一个点到达终点时,另一个点也随之停止运动,设运动时间为 秒.
(1)求抛物线的解析式;
(2)设 的面积为 ,求 与 的函数关系式;
(3)①当 时,直接写出 的值;
②在点 和点 运动过程中,是否存在某一时刻,使 ?若存在,直接写出此时 的值;若不存在,请说明理由.
如图,抛物线 与 轴交于 、 两点(点 在点 的左侧),与 轴交于点 .
(1)试探究 的外接圆的圆心位置,求出圆心坐标;
(2)点 是抛物线上一点(不与点 重合),且 ,求 的度数;
(3)在(2)的条件下,点 是 轴上方抛物线上一点,点 是抛物线对称轴上一点,是否存在这样的点 和点 ,使得以点 、 、 、 为顶点的四边形是平行四边形?若存在,请直接写出点 的坐标;若不存在,请说明理由.
在平面直角坐标系中,抛物线 过点 , ,与 轴交于点 ,连接 , ,将 沿 所在的直线翻折,得到 ,连接 .
(1)用含 的代数式表示点 的坐标.
(2)如图1,若点 落在抛物线的对称轴上,且在 轴上方,求抛物线的解析式.
(3)设 的面积为 , 的面积为 ,若 ,求 的值.
如图,在 中, , , ,点 , 分别是边 , 上的动点(点 不与 , 重合),且 ,过点 作 的平行线 ,交 于点 ,连接 ,设 为 .
(1)试说明不论 为何值时,总有 ;
(2)是否存在一点 ,使得四边形 为平行四边形,试说明理由;
(3)当 为何值时,四边形 的面积最大,并求出最大值.
如图,已知抛物线 与 轴交于 , 两点 点在 点的左边),与 轴交于点 .
(1)如图1,若 为直角三角形,求 的值;
(2)如图1,在(1)的条件下,点 在抛物线上,点 在抛物线的对称轴上,若以 为边,以点 、 、 、 为顶点的四边形是平行四边形,求 点的坐标;
(3)如图2,过点 作直线 的平行线交抛物线于另一点 ,交 轴于点 ,若 ,求 的值.
在矩形 中, ,点 是 边上的任意一点(不含 , 两端点),过点 作 ,交对角线 于点 .
(1)如图1,将 沿对角线 翻折得到 , 交 于点 .
求证: 是等腰三角形;
(2)如图2,将 绕点 逆时针方向旋转得到△ ,连接 , .设旋转角为 .
①若 ,即 在 的内部时,求证:△ △ .
②如图3,若点 是 的中点,△ 能否为直角三角形?如果能,试求出此时 的值,如果不能,请说明理由.
已知正方形 中 与 交于 点,点 在线段 上,作直线 交直线 于 ,过 作 于 ,设直线 交 于 .
(1)如图1,当 在线段 上时,求证: ;
(2)如图2,当 在线段 上,连接 ,当 时,求证: ;
(3)在图3,当 在线段 上,连接 ,当 时,求证: .
试题篮
()