优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 相似三角形的判定与性质 / 解答题
初中数学

如图,在平面直角坐标系中,矩形 ABCD 的边 AB x 轴上, AB BC 的长分别是一元二次方程 x 2 7 x + 12 = 0 的两个根 ( BC > AB ) OA = 2 OB ,边 CD y 轴于点 E ,动点 P 以每秒1个单位长度的速度,从点 E 出发沿折线段 ED DA 向点 A 运动,运动的时间为 t ( 0 t < 6 ) 秒,设 ΔBOP 与矩形 AOED 重叠部分的面积为 S

(1)求点 D 的坐标;

(2)求 S 关于 t 的函数关系式,并写出自变量的取值范围;

(3)在点 P 的运动过程中,是否存在点 P ,使 ΔBEP 为等腰三角形?若存在,直接写出点 P 的坐标;若不存在,请说明理由.

来源:2019年黑龙江省七台河市中考数学试卷
  • 题型:未知
  • 难度:未知

已知: A B 两点在直线 l 的同一侧,线段 AO BM 均是直线 l 的垂线段,且 BM AO 的右边, AO = 2 BM ,将 BM 沿直线 l 向右平移,在平移过程中,始终保持 ABP = 90 ° 不变, BP 边与直线 l 相交于点 P

(1)当 P O 重合时(如图2所示),设点 C AO 的中点,连接 BC .求证:四边形 OCBM 是正方形;

(2)请利用如图1所示的情形,求证: AB PB = OM BM

(3)若 AO = 2 6 ,且当 MO = 2 PO 时,请直接写出 AB PB 的长.

来源:2018年广西贵港市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在菱形 ABCD 中, AC BD 交于点 O E BD 上一点, EF / / AB EAB = EBA ,过点 B DA 的垂线,交 DA 的延长线于点 G

(1) DEF AEF 是否相等?若相等,请证明;若不相等,请说明理由;

(2)找出图中与 ΔAGB 相似的三角形,并证明;

(3) BF 的延长线交 CD 的延长线于点 H ,交 AC 于点 M .求证: B M 2 = MF · MH

来源:2018年山东省泰安市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,抛物线 y = a ( x 1 ) ( x 3 ) ( a > 0 ) x 轴交于 A B 两点,抛物线上另有一点 C x 轴下方,且使 ΔOCA ΔOBC

(1)求线段 OC 的长度;

(2)设直线 BC y 轴交于点 M ,点 C BM 的中点时,求直线 BM 和抛物线的解析式;

(3)在(2)的条件下,直线 BC 下方抛物线上是否存在一点 P ,使得四边形 ABPC 面积最大?若存在,请求出点 P 的坐标;若不存在,请说明理由.

来源:2018年山东省东营市中考数学试卷
  • 题型:未知
  • 难度:未知

如图1,经过原点 O 的抛物线 y = a x 2 + bx ( a 0 ) x 轴交于另一点 A ( 3 2 0 ) ,在第一象限内与直线 y = x 交于点 B ( 2 , t )

(1)求这条抛物线的表达式;

(2)在第四象限内的抛物线上有一点 C ,满足以 B O C 为顶点的三角形的面积为2,求点 C 的坐标;

(3)如图2,若点 M 在这条抛物线上,且 MBO = ABO ,在(2)的条件下,是否存在点 P ,使得 ΔPOC ΔMOB ?若存在,求出点 P 的坐标;若不存在,请说明理由.

来源:2017年山东省淄博市中考数学试卷
  • 题型:未知
  • 难度:未知

定义:点 P ΔABC 内部或边上的点(顶点除外),在 ΔPAB ΔPBC ΔPCA 中,若至少有一个三角形与 ΔABC 相似,则称点 P ΔABC 的自相似点.

例如:如图1,点 P ΔABC 的内部, PBC = A BCP = ABC ,则 ΔBCP ΔABC ,故点 P ΔABC 的自相似点.

请你运用所学知识,结合上述材料,解决下列问题:

在平面直角坐标系中,点 M 是曲线 y = 3 3 x ( x > 0 ) 上的任意一点,点 N x 轴正半轴上的任意一点.

(1)如图2,点 P OM 上一点, ONP = M ,试说明点 P ΔMON 的自相似点;当点 M 的坐标是 ( 3 3 ) ,点 N 的坐标是 ( 3 0 ) 时,求点 P 的坐标;

(2)如图3,当点 M 的坐标是 ( 3 , 3 ) ,点 N 的坐标是 ( 2 , 0 ) 时,求 ΔMON 的自相似点的坐标;

(3)是否存在点 M 和点 N ,使 ΔMON 无自相似点?若存在,请直接写出这两点的坐标;若不存在,请说明理由.

来源:2017年山东省济宁市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,直线 y = kx + b ( k b 为常数)分别与 x 轴、 y 轴交于点 A ( 4 , 0 ) B ( 0 , 3 ) ,抛物线 y = x 2 + 2 x + 1 y 轴交于点 C

(1)求直线 y = kx + b 的函数解析式;

(2)若点 P ( x , y ) 是抛物线 y = x 2 + 2 x + 1 上的任意一点,设点 P 到直线 AB 的距离为 d ,求 d 关于 x 的函数解析式,并求 d 取最小值时点 P 的坐标;

(3)若点 E 在抛物线 y = x 2 + 2 x + 1 的对称轴上移动,点 F 在直线 AB 上移动,求 CE + EF 的最小值.

来源:2017年山东省滨州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,抛物线 y = 2 9 x 2 + bx + c 经过点 A ( 3 , 0 ) ,点 C ( 0 , 4 ) ,作 CD / / x 轴交抛物线于点 D ,作 DE x 轴,垂足为 E ,动点 M 从点 E 出发在线段 EA 上以每秒2个单位长度的速度向点 A 运动,同时动点 N 从点 A 出发在线段 AC 上以每秒1个单位长度的速度向点 C 运动,当一个点到达终点时,另一个点也随之停止运动,设运动时间为 t 秒.

(1)求抛物线的解析式;

(2)设 ΔDMN 的面积为 S ,求 S t 的函数关系式;

(3)①当 MN / / DE 时,直接写出 t 的值;

②在点 M 和点 N 运动过程中,是否存在某一时刻,使 MN AD ?若存在,直接写出此时 t 的值;若不存在,请说明理由.

来源:2016年辽宁省抚顺市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,抛物线 y = 1 2 x 2 + 3 2 x + 2 x 轴交于 A B 两点(点 A 在点 B 的左侧),与 y 轴交于点 C

(1)试探究 ΔABC 的外接圆的圆心位置,求出圆心坐标;

(2)点 P 是抛物线上一点(不与点 A 重合),且 S ΔPBC = S ΔABC ,求 APB 的度数;

(3)在(2)的条件下,点 E x 轴上方抛物线上一点,点 F 是抛物线对称轴上一点,是否存在这样的点 E 和点 F ,使得以点 B P E F 为顶点的四边形是平行四边形?若存在,请直接写出点 F 的坐标;若不存在,请说明理由.

来源:2017年辽宁省鞍山市中考数学试卷
  • 题型:未知
  • 难度:未知

在平面直角坐标系中,抛物线 y = a x 2 + bx + c 过点 A ( 1 , 0 ) B ( 3 , 0 ) ,与 y 轴交于点 C ,连接 AC BC ,将 ΔOBC 沿 BC 所在的直线翻折,得到 ΔDBC ,连接 OD

(1)用含 a 的代数式表示点 C 的坐标.

(2)如图1,若点 D 落在抛物线的对称轴上,且在 x 轴上方,求抛物线的解析式.

(3)设 ΔOBD 的面积为 S 1 ΔOAC 的面积为 S 2 ,若 S 1 S 2 = 2 3 ,求 a 的值.

来源:2019年辽宁省营口市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, A = 90 ° AB = 3 AC = 4 ,点 M Q 分别是边 AB BC 上的动点(点 M 不与 A B 重合),且 MQ BC ,过点 M BC 的平行线 MN ,交 AC 于点 N ,连接 NQ ,设 BQ x

(1)试说明不论 x 为何值时,总有 ΔQBM ΔABC

(2)是否存在一点 Q ,使得四边形 BMNQ 为平行四边形,试说明理由;

(3)当 x 为何值时,四边形 BMNQ 的面积最大,并求出最大值.

来源:2019年宁夏中考数学试卷
  • 题型:未知
  • 难度:未知

如图,已知抛物线 y = 1 2 x 2 3 2 x n ( n > 0 ) x 轴交于 A B 两点 ( A 点在 B 点的左边),与 y 轴交于点 C

(1)如图1,若 ΔABC 为直角三角形,求 n 的值;

(2)如图1,在(1)的条件下,点 P 在抛物线上,点 Q 在抛物线的对称轴上,若以 BC 为边,以点 B C P Q 为顶点的四边形是平行四边形,求 P 点的坐标;

(3)如图2,过点 A 作直线 BC 的平行线交抛物线于另一点 D ,交 y 轴于点 E ,若 AE : ED = 1 : 4 ,求 n 的值.

来源:2018年湖南省益阳市中考数学试卷
  • 题型:未知
  • 难度:未知

在矩形 ABCD 中, AD > AB ,点 P CD 边上的任意一点(不含 C D 两端点),过点 P PF / / BC ,交对角线 BD 于点 F

(1)如图1,将 ΔPDF 沿对角线 BD 翻折得到 ΔQDF QF AD 于点 E

求证: ΔDEF 是等腰三角形;

(2)如图2,将 ΔPDF 绕点 D 逆时针方向旋转得到△ P ' D F ' ,连接 P ' C F ' B .设旋转角为 α ( 0 ° < α < 180 ° )

①若 0 ° < α < BDC ,即 D F ' BDC 的内部时,求证:△ D P ' C D F ' B

②如图3,若点 P CD 的中点,△ D F ' B 能否为直角三角形?如果能,试求出此时 tan DB F ' 的值,如果不能,请说明理由.

来源:2018年湖南省郴州市中考数学试卷
  • 题型:未知
  • 难度:未知

已知正方形 ABCD AC BD 交于 O 点,点 M 在线段 BD 上,作直线 AM 交直线 DC E ,过 D DH AE H ,设直线 DH AC N

(1)如图1,当 M 在线段 BO 上时,求证: MO = NO

(2)如图2,当 M 在线段 OD 上,连接 NE ,当 EN / / BD 时,求证: BM = AB

(3)在图3,当 M 在线段 OD 上,连接 NE ,当 NE EC 时,求证: A N 2 = NC AC

来源:2018年湖南省常德市中考数学试卷
  • 题型:未知
  • 难度:未知

已知二次函数 y = x 2 + bx + c + 1

①当 b = 1 时,求这个二次函数的对称轴的方程;

②若 c = 1 4 b 2 2 b ,问: b 为何值时,二次函数的图象与 x 轴相切?

③若二次函数的图象与 x 轴交于点 A ( x 1 0 ) B ( x 2 0 ) ,且 x 1 < x 2 b > 0 ,与 y 轴的正半轴交于点 M ,以 AB 为直径的半圆恰好过点 M ,二次函数的对称轴 l x 轴、直线 BM 、直线 AM 分别交于点 D E F ,且满足 DE EF = 1 3 ,求二次函数的表达式.

来源:2017年湖南省株洲市中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学相似三角形的判定与性质解答题