如图,已知的半径长为1,、是的两条弦,且,的延长线交于点,联结、.
(1)求证:;
(2)当是直角三角形时,求、两点的距离;
(3)记、、 的面积分别为、、,如果是和的比例中项,求的长.
如图所示,梯形 中, , , , , ,点 是边 上的动点,点 是射线 上一点,射线 和射线 交于点 ,且 .
(1)求线段 的长;
(2)如果 是以 为腰的等腰三角形,求线段 的长;
(3)如果点 在边 上(不与点 、 重合),设 , ,求 关于 的函数解析式,并写出 的取值范围.
问题提出
(1)如图①,是等边三角形,,若点是的内心,则的长为 ;
问题探究
(2)如图②,在矩形中,,,如果点是边上一点,且,那么边上是否存在一点,使得线段将矩形的面积平分?若存在,求出的长;若不存在,请说明理由.
问题解决
(3)某城市街角有一草坪,草坪是由草地和弦与其所对的劣弧围成的草地组成,如图③所示.管理员王师傅在处的水管上安装了一喷灌龙头,以后,他想只用喷灌龙头来给这块草坪浇水,并且在用喷灌龙头浇水时,既要能确保草坪的每个角落都能浇上水,又能节约用水,于是,他让喷灌龙头的转角正好等于(即每次喷灌时喷灌龙头由转到,然后再转回,这样往复喷灌.同时,再合理设计好喷灌龙头喷水的射程就可以了.
如图③,已测出,,的面积为;过弦的中点作交于点,又测得.
请你根据以上信息,帮助王师傅计算喷灌龙头的射程至少多少米时,才能实现他的想法?为什么?(结果保留根号或精确到0.01米)
如图,抛物线交轴于,两点,交轴于点.直线经过点,.
(1)求抛物线的解析式;
(2)点是抛物线上一动点,过点作轴的垂线,交直线于点,设点的横坐标为.
①当是直角三角形时,求点的坐标;
②作点关于点的对称点,则平面内存在直线,使点,,到该直线的距离都相等.当点在轴右侧的抛物线上,且与点不重合时,请直接写出直线的解析式.,可用含的式子表示)
如图,抛物线交轴于、两点,交轴于点,顶点的坐标为,对称轴交轴于点,直线交轴于点,交轴于点,交抛物线的对称轴于点.
(1)求出,,的值.
(2)点为抛物线对称轴上一个动点,若是以为腰的等腰三角形时,请求出点的坐标.
(3)点为抛物线上一个动点,当点关于直线的对称点恰好落在轴上时,请直接写出此时点的坐标.
如图,直线与轴交于点,与轴交于点,抛物线经过点,.
(1)求点的坐标和抛物线的解析式;
(2)为轴上一动点,过点且垂直于轴的直线与直线及抛物线分别交于点,.
①点在线段上运动,若以,,为顶点的三角形与相似,求点的坐标;
②点在轴上自由运动,若三个点,,中恰有一点是其它两点所连线段的中点(三点重合除外),则称,,三点为“共谐点”.请直接写出使得,,三点成为“共谐点”的的值.
如图,在平面直角坐标系中,有抛物线.抛物线经过原点,与轴正半轴交于点,与其对称轴交于点,是抛物线上一点,且在轴上方,过点作轴的垂线交抛物线于点,过点作的垂线交抛物线于点(不与点重合),连结,设点的横坐标为.
(1)求的值;
(2)当抛物线经过原点时,设与重叠部分图形的周长为.
①求的值;
②求与之间的函数关系式;
(3)当为何值时,存在点,使以点,,,为顶点的四边形是轴对称图形?直接写出的值.
如图1和图2,在中,,,.点在边上,点,分别在,上,且.点从点出发沿折线匀速移动,到达点时停止;而点在边上随移动,且始终保持.
(1)当点在上时,求点与点的最短距离;
(2)若点在上,且将的面积分成上下两部分时,求的长;
(3)设点移动的路程为,当及时,分别求点到直线的距离(用含的式子表示);
(4)在点处设计并安装一扫描器,按定角扫描区域(含边界),扫描器随点从到再到共用时36秒.若,请直接写出点被扫描到的总时长.
如图,中,,,为内部一点,且.
(1)求证:;
(2)求证:;
(3)若点到三角形的边,,的距离分别为,,,求证.
已知正方形,点为边的中点.
(1)如图1,点为线段上的一点,且,延长、分别与边、交于点、.
①求证:;
②求证:.
(2)如图2,在边上取一点,满足,连接交于点,连接并延长交于点,求的值.
如图1,,分别在射线,上,且为钝角,现以线段,为斜边向的外侧作等腰直角三角形,分别是,,点,,分别是,,的中点.
(1)求证:;
(2)延长,交于点.
①如图2,若,求证:为等边三角形;
②如图3,若,求大小和的值.
如图,已知∠MON=90°,A是∠MON内部的一点,过点A作AB⊥ON,垂足为点B,AB=3厘米,OB=4厘米,动点E,F同时从O点出发,点E以1.5厘米/秒的速度沿ON方向运动,点F以2厘米/秒的速度沿OM方向运动,EF与OA交于点C,连接AE,当点E到达点B时,点F随之停止运动.设运动时间为t秒(t>0).
(1)当t=1秒时,△EOF与△ABO是否相似?请说明理由;
(2)在运动过程中,不论t取何值时,总有EF⊥OA.为什么?
(3)连接AF,在运动过程中,是否存在某一时刻t,使得S△AEF=S四边形ABOF?若存在,请求出此时t的值;若不存在,请说明理由.
试题篮
()