如图1,矩形ABCD中, , ,点E为AD上一定点,点F为AD延长线上一点,且 ,点P从A点出发,沿AB边向点B以2cm/s的速度运动,连结PE,设点P运动的时间为ts,△PAE的面积为ycm2,当 时,△PAE的面积y(cm2)关于时间t(s)的函数图象如图2所示,连结PF,交CD于点H.
(1)t的取值范围为 ,AE= cm;
(2)如图3,将△HDF沿线段DF进行翻折,与CD的延长线交于点M,连结AM,当a为何值时,四边形PAMH为菱形?并求出此时点P的运动时间t;
(3)如图4,当点P出发1s后,AD边上另一动点Q从E点出发,沿ED边向点D以1cm/s的速度运动,如果P,Q两点中的任意一点到达终点后,另一点也停止运动,连结PQ,QH.若 ,请问△PQH能否构成直角三角形?若能,请求出点P的运动时间t;若不能,请说明理由.
如图所示,在平面直角坐标系中,过点 A( )的两条直线分别交 y轴于 B、 C两点,且 B、 C两点的纵坐标分别是一元二次方程 x 2﹣2 x﹣3=0的两个根
(1)求线段 BC的长度;
(2)试问:直线 AC与直线 AB是否垂直?请说明理由;
(3)若点 D在直线 AC上,且 DB= DC,求点 D的坐标;
(4)在(3)的条件下,直线 BD上是否存在点 P,使以 A、 B、 P三点为顶点的三角形是等腰三角形?若存在,请直接写出 P点的坐标;若不存在,请说明理由.
如图1,在平面直角坐标系中,抛物线 y= x 2+ x﹣ 与 x轴交于点 A、 B(点 A在点 B右侧),点 D为抛物线的顶点,点 C在 y轴的正半轴上, CD交 x轴于点 F,△ CAD绕点 C顺时针旋转得到△ CFE,点 A恰好旋转到点 F,连接 BE.
(1)求点 A、 B、 D的坐标;
(2)求证:四边形 BFCE是平行四边形;
(3)如图2,过顶点 D作 DD 1⊥ x轴于点 D 1,点 P是抛物线上一动点,过点 P作 PM⊥ x轴,点 M为垂足,使得△ PAM与△ DD 1 A相似(不含全等).
①求出一个满足以上条件的点 P的横坐标;
②直接回答这样的点 P共有几个?
已知在平面直角坐标系中,点 A(3,0), B(﹣3,0), C(﹣3,8),以线段 BC为直径作圆,圆心为 E,直线 AC交⊙ E于点 D,连接 OD.
(1)求证:直线 OD是⊙ E的切线;
(2)点 F为 x轴上任意一动点,连接 CF交⊙ E于点 G,连接 BG;
①当tan∠ ACF= 时,求所有 F点的坐标 (直接写出);
②求 的最大值.
【问题】
如图1,在Rt△ ABC中,∠ ACB=90°, AC= BC,过点 C作直线 l平行于 AB.∠ EDF=90°,点 D在直线 l上移动,角的一边 DE始终经过点 B,另一边 DF与 AC交于点 P,研究 DP和 DB的数量关系.
【探究发现】
(1)如图2,某数学兴趣小组运用"从特殊到一般"的数学思想,发现当点 D移动到使点 P与点 C重合时,通过推理就可以得到 DP= DB,请写出证明过程;
【数学思考】
(2)如图3,若点 P是 AC上的任意一点(不含端点 A、 C),受(1)的启发,这个小组过点 D作 DG⊥ CD交 BC于点 G,就可以证明 DP= DB,请完成证明过程;
【拓展引申】
(3)如图4,在(1)的条件下, M是 AB边上任意一点(不含端点 A、 B), N是射线 BD上一点,且 AM= BN,连接 MN与 BC交于点 Q,这个数学兴趣小组经过多次取 M点反复进行实验,发现点 M在某一位置时 BQ的值最大.若 AC= BC=4,请你直接写出 BQ的最大值.
如图,矩形OABC的两边OA,OC分别在x轴和y轴的正半轴上,点B的坐标为( ),点D在CB上,且CD:DB=2:1,OB交AD于点E.平行于x轴的直线l从原点O出发,以每秒1个单位长度的速度沿y轴向上平移,到C点时停止;l与线段OB,AD分别相交与M,N两点,以MN为边作等边△MNP(点P在线段MN的下方).设直线l的运动时间为t(秒),△MNP与△OAB重叠部分的面积为S(平分单位).
(1)直接写出点E的坐标;
(2)求S与t的函数关系式;
(3)是否存在某一时刻t,使得 成立?若存在,请求出此时t的值;若不存在,请说明理由.
如图,在平面直角坐标系中, 为原点,四边形 是矩形,点 , 的坐标分别是 和 ,点 是对角线 上一动点(不与 , 重合),连结 ,作 ,交 轴于点 ,以线段 , 为邻边作矩形 .
(1)填空:点 的坐标为 ;
(2)是否存在这样的点 ,使得 是等腰三角形?若存在,请求出 的长度;若不存在,请说明理由;
(3)①求证: ;
②设 ,矩形 的面积为 ,求 关于 的函数关系式(可利用①的结论),并求出 的最小值.
如图,已知抛物线经过原点O,顶点为A(1,1),且与直线y=x﹣2交于B,C两点.
(1)求抛物线的解析式及点C的坐标;
(2)求证:△ABC是直角三角形;
(3)若点N为x轴上的一个动点,过点N作MN⊥x轴与抛物线交于点M,则是否存在以O,M,N为顶点的三角形与△ABC相似?若存在,请求出点N的坐标;若不存在,请说明理由.
如图,抛物线 与 轴交于点 和点 ,与 轴交于点 ,连接 ,点 是线段 上的动点(与点 , 不重合),连接 并延长 交抛物线于点 ,连接 , ,设点 的横坐标为 .
(1)求抛物线的解析式和点 的坐标;
(2)当 的面积等于2时,求 的值;
(3)在点 运动过程中, 是否存在最大值?若存在,求出最大值;若不存在,请说明理由.
如图,矩形 中,点 为对角线 所在直线上的一个动点,连接 ,过点 作 ,交直线 于点 ,过点 作 ,交直线 于点 ,交直线 于点 . , .
(1)如图1,①当点 在线段 上时, 和 的数量关系为: ;
② 的值是 ;
(2)如图2,当点 在 延长线上时,(1)中的结论②是否成立?若成立,请证明;若不成立,说明理由;
(3)如图3,以线段 , 为邻边作矩形 .设 的长为 ,矩形 的面积为 .请直接写出 与 之间的函数关系式及 的最小值.
如图,抛物线 与 轴相交于点 和点 ,与 轴相交于点 ,作直线 .
(1)求抛物线的解析式;
(2)在直线 上方的抛物线上存在点 ,使 ,求点 的坐标;
(3)在(2)的条件下,点 的坐标为 ,点 在抛物线上,点 在直线 上.当以 , , , 为顶点的四边形是平行四边形时,请直接写出点 的坐标.
如图,抛物线 与 轴交于点 ,点 ,与 轴交于点 ,抛物线的对称轴为直线 ,点 坐标为 .
(1)求抛物线表达式;
(2)在抛物线上是否存在点 ,使 ,如果存在,求出点 坐标;如果不存在,请说明理由;
(3)在(2)的条件下,若点 在 轴上方,点 是直线 上方抛物线上的一个动点,求点 到直线 的最大距离;
(4)点 是线段 上的动点,点 是线段 上的动点,点 是线段 上的动点,三个动点都不与点 , , 重合,连接 , , ,得到 ,直接写出 周长的最小值.
如图所示,二次函数的图象(记为抛物线与轴交于点,与轴分别交于点、,点、的横坐标分别记为,,且.
(1)若,,且过点,求该二次函数的表达式;
(2)若关于的一元二次方程的判别式△.求证:当时,二次函数的图象与轴没有交点.
(3)若,点的坐标为,,过点作直线垂直于轴,且抛物线的的顶点在直线上,连接、、,的延长线与抛物线交于点,若,求的最小值.
如图,半径为4的中,弦的长度为,点是劣弧上的一个动点,点是弦的中点,点是弦的中点,连接、、.
(1)求的度数;
(2)当点沿着劣弧从点开始,逆时针运动到点时,求的外心所经过的路径的长度;
(3)分别记,的面积为,,当时,求弦的长度.
试题篮
()