阅读下面材料,完成(1) (3)题
数学课上,老师出示了这样一道题:如图1, 中, ,点 、 在 上, , (其中 , 的平分线与 相交于点 , ,垂足为 ,探究线段 与 的数量关系,并证明.同学们经过思考后,交流了自己的想法:
小明:“通过观察和度量,发现 与 相等.”
小伟:“通过构造全等三角形,经过进一步推理,可以得到线段 与 的数量关系.”
老师:“保留原题条件,延长图1中的 ,与 相交于点 (如图 ,可以求出 的值.”
(1)求证: ;
(2)探究线段 与 的数量关系(用含 的代数式表示),并证明;
(3)直接写出 的值(用含 的代数式表示).
在 中, , 是 内一点,连接 , ,在 左侧作 ,使 ,以 和 为邻边作 ,连接 , .
(1)若 , .
①如图1,当 , , 三点共线时, 与 之间的数量关系为 .
②如图2,当 , , 三点不共线时,①中的结论是否仍然成立?请说明理由.
(2)若 , , ,且 , , 三点共线,求 的值.
在 中, , 是 内一点,连接 , ,在 左侧作 ,使 ,以 和 为邻边作 ,连接 , .
(1)若 , .
①如图1,当 , , 三点共线时, 与 之间的数量关系为 .
②如图2,当 , , 三点不共线时,①中的结论是否仍然成立?请说明理由.
(2)若 , , ,且 , , 三点共线,求 的值.
如图1,在四边形 中,若 平分 , ,且 ,则我们称这样的四边形 为“黄金四边形”, 称为“黄金角”.
【概念理解】(1)已知四边形 为“黄金四边形”, 为“黄金角”, ,若 ,则 .
【问题探究】(2)如图2,在四边形 中, , .求证:四边形 为“黄金四边形”.
【拓展延伸】(3)如图3,在“黄金四边形” 中, 为“黄金角”, ,在四边形 外部依次作△ ,△ , ,使四边形 , , 均为“黄金四边形”,且满足 , ,2, 均为“黄金角”, ,2,
①若 ,则第 个“黄金四边形”中, (用含 的式子表示).
②若“黄金角” ,则当 , , 三点第一次在同一条直线上时, .
如图 1 所示, 在四边形 中, 点 , , , 分别是 , , , 的中点, 连接 , , , , .
(1) 证明: 四边形 是平行四边形;
(2) 将 绕点 顺时针旋转得到 ,如图 2 所示, 连接 , .
①若 , ,求 的值;
②试在四边形 中添加一个条件, 使 , 的长在旋转过程中始终相等 . (不 要求证明)
如图1所示,在 中,点 是 上一点,过点 的直线与 , 的延长线分别相交于点 , .
【问题引入】
(1)若点 是 的中点, ,求 的值;
温馨提示:过点 作 的平行线交 的延长线于点 .
【探索研究】
(2)若点 是 上任意一点(不与 , 重合),求证: ;
【拓展应用】
(3)如图2所示,点 是 内任意一点,射线 , , 分别交 , , 于点 , , ,若 , ,求 的值.
已知矩形 的一条边 ,将矩形 折叠,使得顶点 落在 边上的 点处
(Ⅰ)如图1,已知折痕与边 交于点 ,连接 、 、 .若 与 的面积比为 ,求边 的长.
(Ⅱ)如图2,在(Ⅰ)的条件下,擦去折痕 、线段 ,连接 .动点 在线段 上(点 与点 、 不重合),动点 在线段 的延长线上,且 ,连接 交 于点 ,作 于点 .试问当动点 、 在移动的过程中,线段 的长度是否发生变化?若变化,说明变化规律.若不变,求出线段 的长度.
如图, 是半圆 的直径, 是 延长线上的点, 的垂直平分线交半圆于点 ,交 于点 ,连接 , .已知半圆 的半径为3, .
(1)求 的长.
(2)点 是线段 上一动点,连接 ,作 , 交线段 于点 .当 为等腰三角形时,求 的长.
如图1,在正方形 中,点 是 边上的一个动点(点 与点 , 不重合),连接 ,过点 作 于点 ,交 于点 .
(1)求证: ;
(2)如图2,当点 运动到 中点时,连接 ,求证: ;
(3)如图3,在(2)的条件下,过点 作 于点 ,分别交 , 于点 , ,求 的值.
已知正方形 的边长为1,点 为正方形内一动点,若点 在 上,且满足 ,延长 交 于点 ,连接 .
(1)如图一,若点 在线段 上,求证: ; ;
(2)①如图二,在点 运动过程中,满足 的点 在 的延长线上时, 和 是否成立?(不需说明理由)
②是否存在满足条件的点 ,使得 ?请说明理由.
如图, 和 均为等腰直角三角形,且 , ,点 为线段 延长线上一点,连接 以 为直角边向下作等腰直角 ,线段 与 相交于点
(1)求证: ;
(2)连接 ,请你判断 与 有什么位置关系?并说明理由;
(3)设 , 的面积为 ,求 与 之间的函数关系式.
如图,在△ ABC中, AD⊥ BC, BE⊥ AC,垂足分别为 D, E, AD与 BE相交于点 F.
(1)求证:△ ACD∽△ BFD;
(2)当tan∠ ABD=1, AC=3时,求 BF的长.
在△ABC中, ,D是△ABC内部或BC边上的一个动点(与B、C不重合),以D为顶点作△DEF,使△DEF∽△ABC(相似比k>1),EF∥BC.
(1)求∠D的度数;
(2)若两三角形重叠部分的形状始终是四边形AGDH.
①如图1,连接GH、AD,当 时,请判断四边形AGDH的形状,并证明;
②当AGDH的面积最大时,过A作 于P,且 ,求k的值.
如图,在矩形 ABCD中, AB=3, BC=5, E是 AD上的一个动点.
(1)如图1,连接 BD, O是对角线 BD的中点,连接 OE.当 OE= DE时,求 AE的长;
(2)如图2,连接 BE, EC,过点 E作 EF⊥ EC交 AB于点 F,连接 CF,与 BE交于点 G.当 BE平分∠ ABC时,求 BG的长;
(3)如图3,连接 EC,点 H在 CD上,将矩形 ABCD沿直线 EH折叠,折叠后点 D落在 EC上的点 D'处,过点 D′作 D′ N⊥ AD于点 N,与 EH交于点 M,且 AE=1.
①求 的值;
②连接 BE,△ D' MH与△ CBE是否相似?请说明理由.
试题篮
()