(1)某学校“智慧方园”数学社团遇到这样一个题目:
如图1,在 中,点 在线段 上, , , , ,求 的长.
经过社团成员讨论发现,过点 作 ,交 的延长线于点 ,通过构造 就可以解决问题(如图 .
请回答: , .
(2)请参考以上解决思路,解决问题:
如图3,在四边形 中,对角线 与 相交于点 , , , , ,求 的长.
如图 1 所示, 在四边形 中, 点 , , , 分别是 , , , 的中点, 连接 , , , , .
(1) 证明: 四边形 是平行四边形;
(2) 将 绕点 顺时针旋转得到 ,如图 2 所示, 连接 , .
①若 , ,求 的值;
②试在四边形 中添加一个条件, 使 , 的长在旋转过程中始终相等 . (不 要求证明)
在四边形 中,点 为 边上的一点,点 为对角线 上的一点,且 .
(1)若四边形 为正方形.
①如图1,请直接写出 与 的数量关系 ;
②将 绕点 逆时针旋转到图2所示的位置,连接 , ,猜想 与 的数量关系并说明理由;
(2)如图3,若四边形 为矩形, ,其它条件都不变,将 绕点 顺时针旋转 得到△ ,连接 , ,请在图3中画出草图,并直接写出 与 的数量关系.
在△ABC中, ,D是△ABC内部或BC边上的一个动点(与B、C不重合),以D为顶点作△DEF,使△DEF∽△ABC(相似比k>1),EF∥BC.
(1)求∠D的度数;
(2)若两三角形重叠部分的形状始终是四边形AGDH.
①如图1,连接GH、AD,当 时,请判断四边形AGDH的形状,并证明;
②当AGDH的面积最大时,过A作 于P,且 ,求k的值.
已知: 和 按如图所示方式放置,点 在 内,连接 、 和 ,且 .
(1)如图①,当 和 均为等边三角形时,试确定 、 、 三条线段的关系,并说明理由;
(2)如图②,当 , 时,试确定 、 、 三条线段的关系,并说明理由;
(3)如图③,当 时,请直接写出 、 、 三条线段的关系.
已知在 中, , , , 分别为 , 边上的点(不包括端点),且 ,连接 ,过点 作 ,垂足为点 ,延长 交 于点 .
(1)如图1,过点 作 于点 ,连接 .
①求证:四边形 是平行四边形;
②若 ,求证: ;
(2)如图2,若 ,求 的值.
如图, ,点 是 平分线上的一点,过点 分别作 , ,垂足分别为点 , , ,点 为线段 上的一点(点 不与点 、 重合),连接 ,以 为直角边,点 为直角顶点,作等腰直角三角形 ,点 落在 左侧.
(1)求证: ;
(2)连接 ,请你判断 与 的位置关系,并说明理由;
(3)设 , 的面积为 ,求 与 之间的函数关系式.
如图, 是半圆 的直径, 是 延长线上的点, 的垂直平分线交半圆于点 ,交 于点 ,连接 , .已知半圆 的半径为3, .
(1)求 的长.
(2)点 是线段 上一动点,连接 ,作 , 交线段 于点 .当 为等腰三角形时,求 的长.
阅读下面材料,完成(1) (3)题
数学课上,老师出示了这样一道题:如图1, 中, ,点 、 在 上, , (其中 , 的平分线与 相交于点 , ,垂足为 ,探究线段 与 的数量关系,并证明.同学们经过思考后,交流了自己的想法:
小明:“通过观察和度量,发现 与 相等.”
小伟:“通过构造全等三角形,经过进一步推理,可以得到线段 与 的数量关系.”
老师:“保留原题条件,延长图1中的 ,与 相交于点 (如图 ,可以求出 的值.”
(1)求证: ;
(2)探究线段 与 的数量关系(用含 的代数式表示),并证明;
(3)直接写出 的值(用含 的代数式表示).
从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.
(1)如图1,在 中, 为角平分线, , ,求证: 为 的完美分割线.
(2)在 中, , 是 的完美分割线,且 为等腰三角形,求 的度数.
(3)如图2, 中, , , 是 的完美分割线,且 是以 为底边的等腰三角形,求完美分割线 的长.
如图,正方形 ABCD的边长为3 cm, P, Q分别从 B, A出发沿 BC, AD方向运动, P点的运动速度是1 cm/秒, Q点的运动速度是2 cm/秒,连接 A, P并过 Q作 QE⊥ AP垂足为 E.
(1)求证:△ ABP∽△ QEA;
(2)当运动时间 t为何值时,△ ABP≌△ QEA;
(3)设△ QEA的面积为 y,用运动时刻 t表示△ QEA的面积 y(不要求考 t的取值范围).(提示:解答(2)(3)时可不分先后)
如图,在矩形 ABCD中, AB=3, BC=5, E是 AD上的一个动点.
(1)如图1,连接 BD, O是对角线 BD的中点,连接 OE.当 OE= DE时,求 AE的长;
(2)如图2,连接 BE, EC,过点 E作 EF⊥ EC交 AB于点 F,连接 CF,与 BE交于点 G.当 BE平分∠ ABC时,求 BG的长;
(3)如图3,连接 EC,点 H在 CD上,将矩形 ABCD沿直线 EH折叠,折叠后点 D落在 EC上的点 D'处,过点 D′作 D′ N⊥ AD于点 N,与 EH交于点 M,且 AE=1.
①求 的值;
②连接 BE,△ D' MH与△ CBE是否相似?请说明理由.
如图1,在正方形 中,点 是 边上的一个动点(点 与点 , 不重合),连接 ,过点 作 于点 ,交 于点 .
(1)求证: ;
(2)如图2,当点 运动到 中点时,连接 ,求证: ;
(3)如图3,在(2)的条件下,过点 作 于点 ,分别交 , 于点 , ,求 的值.
已知矩形 的一条边 ,将矩形 折叠,使得顶点 落在 边上的 点处
(Ⅰ)如图1,已知折痕与边 交于点 ,连接 、 、 .若 与 的面积比为 ,求边 的长.
(Ⅱ)如图2,在(Ⅰ)的条件下,擦去折痕 、线段 ,连接 .动点 在线段 上(点 与点 、 不重合),动点 在线段 的延长线上,且 ,连接 交 于点 ,作 于点 .试问当动点 、 在移动的过程中,线段 的长度是否发生变化?若变化,说明变化规律.若不变,求出线段 的长度.
试题篮
()