优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 相似形综合题
初中数学

在现实生活中,我们经常会看到许多“标准”的矩形,如我们的课本封面、 A 4 的打印纸等,其实这些矩形的长与宽之比都为 2 : 1 ,我们不妨就把这样的矩形称为“标准矩形”,在“标准矩形” ABCD 中, P DC 边上一定点,且 CP = BC ,如图所示.

(1)如图①,求证: BA = BP

(2)如图②,点 Q DC 上,且 DQ = CP ,若 G BC 边上一动点,当 ΔAGQ 的周长最小时,求 CG GB 的值;

(3)如图③,已知 AD = 1 ,在(2)的条件下,连接 AG 并延长交 DC 的延长线于点 F ,连接 BF T BF 的中点, M N 分别为线段 PF AB 上的动点,且始终保持 PM = BN ,请证明: ΔMNT 的面积 S 为定值,并求出这个定值.

来源:2017年湖北省黄石市中考数学试卷
  • 题型:未知
  • 难度:未知

Rt Δ ABC 中, ACB = 90 ° D ΔABC 内一点,连接 AD BD ,在 BD 左侧作 Rt Δ BDE ,使 BDE = 90 ° ,以 AD DE 为邻边作 ADEF ,连接 CD DF

(1)若 AC = BC BD = DE

①如图1,当 B D F 三点共线时, CD DF 之间的数量关系为  

②如图2,当 B D F 三点不共线时,①中的结论是否仍然成立?请说明理由.

(2)若 BC = 2 AC BD = 2 DE CD AC = 4 5 ,且 E C F 三点共线,求 AF CE 的值.

来源:2019年辽宁省鞍山市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,矩形 ABCD 中, AB = 2 AD = 4 E F 分别在 AD BC 上,点 A 与点 C 关于 EF 所在的直线对称, P 是边 DC 上的一动点.

(1)连接 AF CE ,求证四边形 AFCE 是菱形;

(2)当 ΔPEF 的周长最小时,求 DP CP 的值;

(3)连接 BP EF 于点 M ,当 EMP = 45 ° 时,求 CP 的长.

来源:2019年江苏省南通市中考数学试卷
  • 题型:未知
  • 难度:未知

如图 1 所示, 在四边形 ABCD 中, 点 O E F G 分别是 AB BC CD AD 的中点, 连接 OE EF FG GO GE

(1) 证明: 四边形 OEFG 是平行四边形;

(2) 将 ΔOGE 绕点 O 顺时针旋转得到 ΔOMN ,如图 2 所示, 连接 GM EN

①若 OE = 3 OG = 1 ,求 EN GM 的值;

②试在四边形 ABCD 中添加一个条件, 使 GM EN 的长在旋转过程中始终相等 . (不 要求证明)

来源:2018年湖南省邵阳市中考数学试卷
  • 题型:未知
  • 难度:未知

已知在 Rt Δ ABC 中, BAC = 90 ° AB AC D E 分别为 AC BC 边上的点(不包括端点),且 DC BE = AC BC = m ,连接 AE ,过点 D DM AE ,垂足为点 M ,延长 DM AB 于点 F

(1)如图1,过点 E EH AB 于点 H ,连接 DH

①求证:四边形 DHEC 是平行四边形;

②若 m = 2 2 ,求证: AE = DF

(2)如图2,若 m = 3 5 ,求 DF AE 的值.

来源:2018年浙江省湖州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, 在矩形 ABCD 中, AB = 6 cm AD = 8 cm ,点 P 从点 B 出发, 沿对角线 BD 向点 D 匀速运动, 速度为 4 cm / s ,过点 P PQ BD BC 于点 Q ,以 PQ 为一边作正方形 PQMN ,使得点 N 落在射线 PD 上, 点 O 从点 D 出发, 沿 DC 向点 C 匀速运动, 速度为 3 cm / s ,以 O 为圆心, 0 . 8 cm 为半径作 O ,点 P 与点 O 同时出发, 设它们的运动时间为 t (单 位: s ) ( 0 < t < 8 5 )

(1) 如图 1 ,连接 DQ 平分 BDC 时, t 的值为     

(2) 如图 2 ,连接 CM ,若 ΔCMQ 是以 CQ 为底的等腰三角形, 求 t 的值;

(3) 请你继续进行探究, 并解答下列问题:

①证明: 在运动过程中, 点 O 始终在 QM 所在直线的左侧;

②如图 3 ,在运动过程中, 当 QM O 相切时, 求 t 的值;并判断此时 PM O 是否也相切?说明理由 .

来源:2016年江苏省苏州市中考数学试卷
  • 题型:未知
  • 难度:未知

阅读下面材料:

小明遇到这样一个问题:如图1, ΔABC 中, AB = AC ,点 D BC 边上, DAB = ABD BE AD ,垂足为 E ,求证: BC = 2 AE

小明经探究发现,过点 A AF BC ,垂足为 F ,得到 AFB = BEA ,从而可证 ΔABF ΔBAE (如图 2 ) ,使问题得到解决.

(1)根据阅读材料回答: ΔABF ΔBAE 全等的条件是  (填“ SSS ”、“ SAS ”、“ ASA ”、“ AAS ”或“ HL ”中的一个)

参考小明思考问题的方法,解答下列问题:

(2)如图3, ΔABC 中, AB = AC BAC = 90 ° D BC 的中点, E DC 的中点,点 F AC 的延长线上,且 CDF = EAC ,若 CF = 2 ,求 AB 的长;

(3)如图4, ΔABC 中, AB = AC BAC = 120 ° ,点 D E 分别在 AB AC 边上,且 AD = kDB (其中 0 < k < 3 3 ) AED = BCD ,求 AE EC 的值(用含 k 的式子表示).

来源:2016年辽宁省大连市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, ΔABC 中, ACB = 90 ° AC = 5 BC = 12 CO AB 于点 O D 是线段 OB 上一点, DE = 2 ED / / AC ( ADE < 90 ° ) ,连接 BE CD .设 BE CD 的中点分别为 P Q

(1)求 AO 的长;

(2)求 PQ 的长;

(3)设 PQ AB 的交点为 M ,请直接写出 | PM - MQ | 的值.

来源:2016年江苏省南通市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, OF MON 的平分线,点 A 在射线 OM 上, P Q 是直线 ON 上的两动点,点 Q 在点 P 的右侧,且 PQ = OA ,作线段 OQ 的垂直平分线,分别交直线 OF ON 于点 B 、点 C ,连接 AB PB

(1)如图1,当 P Q 两点都在射线 ON 上时,请直接写出线段 AB PB 的数量关系;

(2)如图2,当 P Q 两点都在射线 ON 的反向延长线上时,线段 AB PB 是否还存在(1)中的数量关系?若存在,请写出证明过程;若不存在,请说明理由;

(3)如图3, MON = 60 ° ,连接 AP ,设 AP OQ = k ,当 P Q 两点都在射线 ON 上移动时, k 是否存在最小值?若存在,请直接写出 k 的最小值;若不存在,请说明理由.

来源:2017年辽宁省抚顺市中考数学试卷
  • 题型:未知
  • 难度:未知

从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.

(1)如图1,在 ΔABC 中, CD 为角平分线, A = 40 ° B = 60 ° ,求证: CD ΔABC 的完美分割线.

(2)在 ΔABC 中, A = 48 ° CD ΔABC 的完美分割线,且 ΔACD 为等腰三角形,求 ACB 的度数.

(3)如图2, ΔABC 中, AC = 2 BC = 2 CD ΔABC 的完美分割线,且 ΔACD 是以 CD 为底边的等腰三角形,求完美分割线 CD 的长.

来源:2016年浙江省宁波市中考数学试卷
  • 题型:未知
  • 难度:未知

已知矩形 ABCD 的一条边 AD = 8 ,将矩形 ABCD 折叠,使得顶点 B 落在 CD 边上的 P 点处

(Ⅰ)如图1,已知折痕与边 BC 交于点 O ,连接 AP OP OA .若 ΔOCP ΔPDA 的面积比为 1 : 4 ,求边 CD 的长.

(Ⅱ)如图2,在(Ⅰ)的条件下,擦去折痕 AO 、线段 OP ,连接 BP .动点 M 在线段 AP 上(点 M 与点 P A 不重合),动点 N 在线段 AB 的延长线上,且 BN = PM ,连接 MN PB 于点 F ,作 ME BP 于点 E .试问当动点 M N 在移动的过程中,线段 EF 的长度是否发生变化?若变化,说明变化规律.若不变,求出线段 EF 的长度.

来源:2016年四川省自贡市中考数学试卷
  • 题型:未知
  • 难度:未知

如图1所示,在 ΔABC 中,点 O AC 上一点,过点 O 的直线与 AB BC 的延长线分别相交于点 M N

【问题引入】

(1)若点 O AC 的中点, AM BM = 1 3 ,求 CN BN 的值;

温馨提示:过点 A MN 的平行线交 BN 的延长线于点 G

【探索研究】

(2)若点 O AC 上任意一点(不与 A C 重合),求证: AM MB · BN NC · CO OA = 1

【拓展应用】

(3)如图2所示,点 P ΔABC 内任意一点,射线 AP BP CP 分别交 BC AC AB 于点 D E F ,若 AF BF = 1 3 BD CD = 1 2 ,求 AE CE 的值.

来源:2017年湖南省邵阳市中考数学试卷
  • 题型:未知
  • 难度:未知

阅读下面材料,完成(1) (3)题

数学课上,老师出示了这样一道题:如图1, ΔABC 中, BAC = 90 ° ,点 D E BC 上, AD = AB AB = kBD (其中 2 2 < k < 1 ) ABC = ACB + BAE EAC 的平分线与 BC 相交于点 F BG AF ,垂足为 G ,探究线段 BG AC 的数量关系,并证明.同学们经过思考后,交流了自己的想法:

小明:“通过观察和度量,发现 BAE DAC 相等.”

小伟:“通过构造全等三角形,经过进一步推理,可以得到线段 BG AC 的数量关系.”

老师:“保留原题条件,延长图1中的 BG ,与 AC 相交于点 H (如图 2 ) ,可以求出 AH HC 的值.”

(1)求证: BAE = DAC

(2)探究线段 BG AC 的数量关系(用含 k 的代数式表示),并证明;

(3)直接写出 AH HC 的值(用含 k 的代数式表示).

来源:2019年辽宁省大连市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, MBN = 90 ° ,点 C MBN 平分线上的一点,过点 C 分别作 AC BC CE BN ,垂足分别为点 C E AC = 4 2 ,点 P 为线段 BE 上的一点(点 P 不与点 B E 重合),连接 CP ,以 CP 为直角边,点 P 为直角顶点,作等腰直角三角形 CPD ,点 D 落在 BC 左侧.

(1)求证: CP CD = CE CB

(2)连接 BD ,请你判断 AC BD 的位置关系,并说明理由;

(3)设 PE = x ΔPBD 的面积为 S ,求 S x 之间的函数关系式.

来源:2017年辽宁省鞍山市中考数学试卷
  • 题型:未知
  • 难度:未知

已知,在 ΔABC 中,点 D AB 上,点 E BC 延长线上一点,且 AD = CE ,连接 DE AC 于点 F

(1)猜想证明:如图1,在 ΔABC 中,若 AB = BC ,学生们发现: DF = EF .下面是两位学生的证明思路:

思路1:过点 D DG / / BC ,交 AC 于点 G ,可证 ΔDFG ΔEFC 得出结论;

思路2:过点 E EH / / AB ,交 AC 的延长线于点 H ,可证 ΔADF ΔHEF 得出结论;

请你参考上面的思路,证明 DF = EF (只用一种方法证明即可).

(2)类比探究:在(1)的条件下(如图 1 ) ,过点 D DM AC 于点 M ,试探究线段 AM MF FC 之间满足的数量关系,并证明你的结论.

(3)延伸拓展:如图2,在 ΔABC 中,若 AB = AC ABC = 2 BAC AB BC = m ,请你用尺规作图在图2中作出 AD 的垂直平分线交 AC 于点 N (不写作法,只保留作图痕迹),并用含 m 的代数式直接表示 NF AC 的值.

来源:2017年辽宁省朝阳市中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学相似形综合题试题