如图1,在平面直角坐标系中,直线 分别与 轴、 轴交于点 , , ,等边 的顶点 与原点 重合, 边落在 轴正半轴上,点 恰好落在线段 上,将等边 从图1的位置沿 轴正方向以每秒1个单位长度的速度平移,边 , 分别与线段 交于点 , (如图2所示),设 平移的时间为 .
(1)等边 的边长为 ;
(2)在运动过程中,当 时, 垂直平分 ;
(3)若在 开始平移的同时.点 从 的顶点 出发.以每秒2个单位长度的速度沿折线 运动.当点 运动到 时即停止运动. 也随之停止平移.
①当点 在线段 上运动时,若 与 相似.求 的值;
②当点 在线段 上运动时,设 ,求 与 的函数关系式,并求出 的最大值及此时点 的坐标.
如图, 中,以 为直径的 交 于点 , 平分 交 于点 ,交 于点 .且 .
(1)求证:直线 是 的切线;
(2)若 ,求 的值.
如图,在平行四边形 中, , ,垂足分别为 , , , 分别与 交于点 和 ,且 .
(1)若 ,求 的长;
(2)求证: .
如图,已知 是圆 的直径,弦 ,垂足为 ,与 平行的圆 的一条切线交 的延长线于点 ,交 的延长线于点 ,切点为 ,连接 交 于点 .
(1)求证: ;
(2)连接 ,若 , ,求圆 的直径的长度.
将形状、大小完全相同的两个等腰三角形如图所示放置,点 在 边上, 绕点 旋转,腰 和底边 分别交 的两腰 , 于 , 两点,若 , , ,则 的最小值为 .
如图,矩形 的对角线 与 交于点 ,过点 作 的垂线分别交 , 于 , 两点.若 , ,则 的长度为
A.1B.2C. D.
如图,以 为直径的 外接于 ,过 点的切线 与 的延长线交于点 , 的平分线分别交 , 于点 , ,其中 , 的长是一元二次方程 的两个实数根.
(1)求证: ;
(2)在线段 上是否存在一点 ,使得四边形 是菱形?若存在,请给予证明,并求其面积;若不存在,说明理由.
如图,在正方形 中, ,把边 绕点 逆时针旋转 得到线段 ,连接 并延长交 于点 ,连接 ,则三角形 的面积为 .
如图,要测量小河两岸相对的两点 , 的距离,可以在小河边取 的垂线 上的一点 ,测得 米, ,则小河宽 等于
A. 米B. 米C. 米D. 米
定义:
我们知道,四边形的一条对角线把这个四边形分成了两个三角形,如果这两个三角形相似(不全等),我们就把这条对角线叫做这个四边形的“相似对角线”.
理解:
(1)如图1,已知 在正方形网格中,请你只用无刻度的直尺在网格中找到一点 ,使四边形 是以 为“相似对角线”的四边形(保留画图痕迹,找出3个即可);
(2)如图2,在四边形 中, , ,对角线 平分 .
求证: 是四边形 的“相似对角线”;
(3)如图3,已知 是四边形 的“相似对角线”, ,连接 ,若 的面积为 ,求 的长.
如图,以 的边 为直径的 恰为 的外接圆, 的平分线交 于点 ,过点 作 交 的延长线于点 .
(1)求证: 是 的切线;
(2)若 , ,求 的长.
在 中, .
(1)如图1,分别过 、 两点作经过点 的直线的垂线,垂足分别为 、 ,求证: ;
(2)如图2, 是边 上一点, , ,求 的值;
(3)如图3, 是边 延长线上一点, , , , ,直接写出 的值.
问题:已知 、 均为锐角, , ,求 的度数.
探究:(1)用6个小正方形构造如图所示的网格图(每个小正方形的边长均为 ,请借助这个网格图求出 的度数;
延伸:(2)设经过图中 、 、 三点的圆弧与 交于 ,求 的弧长.
试题篮
()