优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 解直角三角形的应用
初中数学

某限高曲臂道路闸口如图所示, AB 垂直地面 l 1 于点 A BE 与水平线 l 2 的夹角为 α ( 0 ° α 90 ° ) EF / / l 1 / / l 2 ,若 AB = 1 . 4 米, BE = 2 米,车辆的高度为 h (单位:米),不考虑闸口与车辆的宽度:

①当 α = 90 ° 时, h 小于3.3米的车辆均可以通过该闸口;

②当 α = 45 ° 时, h 等于2.9米的车辆不可以通过该闸口;

③当 α = 60 ° 时, h 等于3.1米的车辆不可以通过该闸口.

则上述说法正确的个数为 (    )

A.

0个

B.

1个

C.

2个

D.

3个

来源:2021年湖南省株洲市中考数学试卷
  • 题型:未知
  • 难度:未知

我国纸伞的制作工艺十分巧妙.如图1,伞不管是张开还是收拢,伞柄 AP 始终平分同一平面内两条伞骨所成的角 BAC ,且 AB = AC ,从而保证伞圈 D 能沿着伞柄滑动.如图2是伞完全收拢时伞骨的示意图,此时伞圈 D 已滑动到点 D ' 的位置,且 A B D ' 三点共线, AD ' = 40 cm B AD ' 中点.当 BAC = 140 ° 时,伞完全张开.

(1)求 AB 的长.

(2)当伞从完全张开到完全收拢,求伞圈 D 沿着伞柄向下滑动的距离.

(参考数据: sin 70 ° 0 . 94 cos 70 ° 0 . 34 tan 70 ° 2 . 75 )

来源:2021年浙江省宁波市中考数学试卷
  • 题型:未知
  • 难度:未知

已知锐角 ΔABC 中,角 A B C 的对边分别为 a b c ,边角总满足关系式: a sin A = b sin B = c sin C

(1)如图1,若 a = 6 B = 45 ° C = 75 ° ,求 b 的值;

(2)某公园准备在园内一个锐角三角形水池 ABC 中建一座小型景观桥 CD (如图2所示),若 CD AB AC = 14 米, AB = 10 米, sin ACB = 5 3 14 ,求景观桥 CD 的长度.

来源:2021年湖南省永州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,著名旅游景区 B 位于大山深处,原来到此旅游需要绕行 C 地,沿折线 A C B 方可到达.当地政府为了增强景区的吸引力,发展壮大旅游经济,修建了一条从 A 地到景区 B 的笔直公路.请结合 A = 45 ° B = 30 ° BC = 100 千米, 2 1 . 4 3 1 . 7 等数据信息,解答下列问题:

(1)公路修建后,从 A 地到景区 B 旅游可以少走多少千米?

(2)为迎接旅游旺季的到来,修建公路时,施工队使用了新的施工技术,实际工作时每天的工效比原计划增加 25 % ,结果提前50天完成了施工任务.求施工队原计划每天修建多少千米?

来源:2020年山东省淄博市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,某梯子长10米,斜靠在竖直的墙面上,当梯子与水平地面所成角为 α 时,梯子顶端靠在墙面上的点 A 处,底端落在水平地面的点 B 处,现将梯子底端向墙面靠近,使梯子与地面所成角为 β ,已知 sin α = cos β = 3 5 ,则梯子顶端上升了 (    )

A.

1米

B.

1.5米

C.

2米

D.

2.5米

来源:2021年湖北省随州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在某小区内拐角处的一段道路上,有一儿童在 C 处玩耍,一辆汽车从被楼房遮挡的拐角另一侧的 A 处驶来,已知 CM = 3 m CO = 5 m DO = 3 m AOD = 70 ° ,汽车从 A 处前行多少米才能发现 C 处的儿童(结果保留整数)?

(参考数据: sin 37 ° 0 . 60 cos 37 ° 0 . 80 tan 37 ° 0 . 75 sin 70 ° 0 . 94 cos 70 ° 0 . 34 tan 70 ° 2 . 75 )

来源:2021年山东省临沂市中考数学试卷
  • 题型:未知
  • 难度:未知

一酒精消毒瓶如图1, AB 为喷嘴, ΔBCD 为按压柄, CE 为伸缩连杆, BE EF 为导管,其示意图如图2, DBE = BEF = 108 ° BD = 6 cm BE = 4 cm .当按压柄 ΔBCD 按压到底时, BD 转动到 BD ' ,此时 BD ' / / EF (如图 3 )

(1)求点 D 转动到点 D ' 的路径长;

(2)求点 D 到直线 EF 的距离(结果精确到 0 . 1 cm )

(参考数据: sin 36 ° 0 . 59 cos 36 ° 0 . 81 tan 36 ° 0 . 73 sin 72 ° 0 . 95 cos 72 ° 0 . 31 tan 72 ° 3 . 08 )

来源:2021年浙江省嘉兴市中考数学试卷
  • 题型:未知
  • 难度:未知

如图1是某中学教学楼的推拉门,已知门的宽度 AD = 2 米,且两扇门的大小相同(即 AB = CD ) ,将左边的门 AB B 1 A 1 绕门轴 A A 1 向里面旋转 35 ° ,将右边的门 CD D 1 C 1 绕门轴 D D 1 向外面旋转 45 ° ,其示意图如图2,求此时 B C 之间的距离(结果保留一位小数).(参考数据: sin 35 ° 0 . 6 cos 35 ° 0 . 8 2 1 . 4 )

来源:2021年青海省中考数学试卷
  • 题型:未知
  • 难度:未知

拓展小组研制的智能操作机器人,如图1,水平操作台为 l ,底座 AB 固定,高 AB 50 cm ,连杆 BC 长度为 70 cm ,手臂 CD 长度为 60 cm .点 B C 是转动点,且 AB BC CD 始终在同一平面内.

(1)转动连杆 BC ,手臂 CD ,使 ABC = 143 ° CD / / l ,如图2,求手臂端点 D 离操作台 l 的高度 DE 的长(精确到 1 cm ,参考数据: sin 53 ° 0 . 8 cos 53 ° 0 . 6 )

(2)物品在操作台 l 上,距离底座 A 110 cm 的点 M 处,转动连杆 BC ,手臂 CD ,手臂端点 D 能否碰到点 M ?请说明理由.

来源:2021年浙江省绍兴市中考数学试卷
  • 题型:未知
  • 难度:未知

某工程队准备从 A B 修建一条隧道,测量员在直线 AB 的同一侧选定 C D 两个观测点,如图.测得 AC 长为 3 2 2 km CD 长为 3 4 ( 2 + 6 ) km BD 长为 3 2 km ACD = 60 ° CDB = 135 ° ( A B C D 在同一水平面内).

(1)求 A D 两点之间的距离;

(2)求隧道 AB 的长度.

来源:2021年内蒙古乌兰察布市中考数学试卷
  • 题型:未知
  • 难度:未知

今年疫情期间,针对各种入口处人工测量体温存在的感染风险高、效率低等问题,清华大学牵头研制一款“测温机器人”,如图1,机器人工作时,行人抬手在测温头处测量手腕温度,体温合格则机器人抬起臂杆行人可通行,不合格时机器人不抬臂杆并报警,从而有效阻隔病原体.

(1)为了设计“测温机器人”的高度,科研团队采集了大量数据.下表是抽样采集某一地区居民的身高数据:

测量对象

男性 ( 18 ~ 60 岁)

女性 ( 18 ~ 55 岁)

抽样人数(人 )

2000

5000

20000

2000

5000

20000

平均身高(厘米)

173

175

176

164

165

164

根据你所学的知识,若要更准确的表示这一地区男、女的平均身高,男性应采用 176 厘米,女性应采用  厘米;

(2)如图2,一般的,人抬手的高度与身高之比为黄金比时给人的感觉最舒适,由此利用(1)中的数据得出测温头点 P 距地面105厘米.指示牌挂在两臂杆 AB AC 的连接点 A 处, A 点距地面110厘米.臂杆落下时两端点 B C 在同一水平线上, BC = 100 厘米,点 C 在点 P 的正下方5厘米处.若两臂杆长度相等,求两臂杆的夹角.

(参考数据表)

计算器按键顺序

计算结果(近似值)

计算器按键顺序

计算结果(近似值)

0.1

78.7

0.2

84.3

1.7

5.7

3.5

11.3

来源:2020年山东省烟台市中考数学试卷
  • 题型:未知
  • 难度:未知

人字梯为现代家庭常用的工具(如图).若 AB AC 的长都为 2 m ,当 α = 50 ° 时,人字梯顶端离地面的高度 AD     m .(结果精确到 0 . 1 m ,参考依据: sin 50 ° 0 . 77 cos 50 ° 0 . 64 tan 50 ° 1 . 19 )

来源:2020年山东省枣庄市中考数学试卷
  • 题型:未知
  • 难度:未知

图1是第七届国际数学教育大会 ( ICME ) 会徽,在其主体图案中选择两个相邻的直角三角形,恰好能组合得到如图2所示的四边形 OABC .若 AB = BC = 1 AOB = α ,则 O C 2 的值为 (    )

A.

1 sin 2 α + 1

B.

sin 2 α + 1

C.

1 cos 2 α + 1

D.

cos 2 α + 1

来源:2021年浙江省温州市中考数学试卷
  • 题型:未知
  • 难度:未知

图①、图②分别是某种型号跑步机的实物图与示意图.已知跑步机手柄 AB与地面 DE平行,踏板 CD长为1.5 mCD与地面 DE的夹角 CDE 15 ° ,支架 AC长为1 m ACD 75 ° ,求跑步机手柄 AB所在直线与地面 DE之间的距离.(结果精确到0.1 m.参考数据: sin 15 ° 0 . 26 cos 15 ° 0 . 97 tan 15 ° 0 . 27 3 1 . 73

来源:2021年四川省广安市中考数学试卷
  • 题型:未知
  • 难度:未知

某工程队准备从 A B 修建一条隧道,测量员在直线 AB 的同一侧选定 C D 两个观测点,如图.测得 AC 长为 3 2 2 km CD 长为 3 4 ( 2 + 6 ) km BD 长为 3 2 km ACD = 60 ° CDB = 135 ° ( A B C D 在同一水平面内).

(1)求 A D 两点之间的距离;

(2)求隧道 AB 的长度.

来源:2021年内蒙古乌兰察布市中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学解直角三角形的应用试题