用频率估计概率,可以发现,抛掷硬币,“正面朝上”的概率为0.5,是指( )
A.连续掷2次,结果一定是“正面朝上”和“反面朝上”各1次 |
B.连续抛掷100次,结果一定是“正面朝上”和“反面朝上”各50次 |
C.抛掷2n次硬币,恰好有n次“正面朝上” |
D.抛掷n次,当n越来越大时,正面朝上的频率会越来越稳定于0.5 |
某射击运动员在同一条件下的射击成绩记录如下:
射击次数 |
20 |
80 |
100 |
200 |
400 |
1000 |
"射中九环以上"的次数 |
18 |
68 |
82 |
168 |
327 |
823 |
"射中九环以上"的频率(结果保留两位小数) |
0.90 |
0.85 |
0.82 |
0.84 |
0.82 |
0.82 |
根据频率的稳定性,估计这名运动员射击一次时"射中九环以上"的概率约是
A. |
0.90 |
B. |
0.82 |
C. |
0.85 |
D. |
0.84 |
同时抛掷两枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,下列事件中是不可能事件的是( )
A.点数之和为12 |
B.点数之和小于3 |
C.点数之和大于4且小于8 |
D.点数之和为13 |
甲、乙两名同学在一次用频率去估计概率的实验中,统一了某一结果出现的频率绘出的统计图 如图所示,则符合这一结果的实验可能是( )
A.从一个装有2个白球和1个红球的袋子中任取两球,取到两个白球的概率 |
B.任意写一个正整数,它能被 2 整除的概率 |
C.抛一枚硬币,连续两次出现正面的概率 |
D.掷一枚正六面体的骰子,出现 1 点的概率 |
如图,正方形ABCD内接于⊙O,⊙O的直径为分米,若在这个圆面上随意抛一粒豆子,则豆子落在正方形ABCD内的概率是( ).
A. | B. | C. | D. |
有一箱子装有3张分别标示4、5、6的号码牌,已知小武以每次取一张且取后不放回的方式,先后取出2张牌,组成一个二位数,取出第1张牌的号码为十位数,第2张牌的号码为个位数,若先后取出2张牌组成二位数的每一种结果发生的机会都相同,则组成的二位数为6的倍数的机率为何?( )
A. | B. | C. | D. |
一枚质地均匀的正方体骰子,其六个面上分别刻有1、2、3、4、5、6六个数字,投掷这个骰子一次,则向上一面的数字小于3的概率是( )
A. | B. | C. | D. |
某十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是黄灯的概率为( )
A. | B. | C. | D. |
已知一个布袋里装有5个红球,3个白球,这些球除颜色外其余都相同.从该布袋里任意摸出1个球,若第一次是1个白球不放回,则第二次摸出白球的概率( ).
A. | B. | C. | D. |
春节前夕,刘丽的奶奶为孩子们准备了一些红包,这些红包的外观相同,已知1个装的是100元,3个装的是50元,剩下的装的是20元.若刘丽从中随机拿出一个,里面装的是20元的红包的概率是,则装有20元红包的个数是( )
A.4 | B.5 | C.16 | D.20 |
下列说法中不正确的是( )
A.“某射击运动员射击一次,正中把靶心”属于随机事件 |
B.“13名同学至少有两名同学的出生月份相同”属于必然事件 |
C.“在标准大气压下,当温度降到-1℃时,水结成冰”属于随机事件 |
D.“某袋中只有5个球,且都是黄球,任意摸出一球是白球”属于不可能事件 |
小明、小颖、和小凡都想去看山西第二届文博会,但现在只有一张门票,三人决定一起做游戏,谁获胜谁就去.游戏规则是:连续掷两枚质地均匀的硬币,若两枚正面朝上,则小明获胜;若两枚反面朝上,则小颖获胜;若一枚正面朝上,一枚反面朝上,则小凡获胜.关于这个游戏,下列判断正确的是( )
A.三个人获胜的概率相同 |
B.小明获胜的概率大 |
C.小颖获胜的概率大 |
D.小凡获胜的概率大 |
一个不透明的口袋里装有除颜色外都相同的5个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球数,采用如下方法:先将口袋中的球摇匀,再从口袋里随机摸出一球,记下颜色,然后把它放回口袋中,不断重复上述过程,小亮共摸了100次,其中有10次摸到白球.因此小亮估计口袋中的红球大约有( )个.
A.45 | B.48 | C.50 | D.55 |
试题篮
()