如图,是一副学生用的三角板,在△ABC 中,∠C=90°, ∠A=60°,∠B=30°;在△中,∠C=90°, ∠A=45°,∠B=45°,且AB=" CB" .若将边与边CA重合,其中点 与点C重合.将三角板绕点C()按逆时针方向旋转,旋转过的角为,旋转过程中边与边AB的交点为M, 设AC=.
(1)计算的长;
(2)当=30°时,证明:∥AB;
(3)若=,当=45°时,计算两个三角板重叠部分图形的面积;
(4)当=60°时,用含的代数式表示两个三角板重叠部分图形的面积.
(参考数据:°= ,°= ,°=
°= , °= , °=)
(本小题满分9分)如图,在平面直角坐标系中,四边形OABC为矩形,点A、B的坐标分别为(12,0)、(12,6),直线与y轴交于点P,与边OA交于点D,与边BC交于点E.
(1)若,求k的值;
(2)在(1)的条件下,当直线绕点P顺时针旋转时,与直线BC和x轴分别交于点N、M,问:是否存在NO平分∠CNM的情况?若存在,求线段DM的长;若不存在,请说明理由;
(3)在(1)的条件下,将矩形OABC沿DE折叠,若点O落在边BC上,求出该点坐标;若不在边BC上,求将(1)中的直线沿y轴怎样平移,使矩形OABC沿平移后的直线折叠,点O恰好落在边BC上.
如图2,边长为2的等边△ABC内接于⊙O,△ABC绕圆心O顺时针方向旋转得到△,A′C′分别与AB、AC交于E、D点,设旋转角度为.
(1)当= ,△A′B′C′与△ABC出现旋转过程中的第一次完全重合;
(2)当=60°时(如图1),该图( )
A.是中心对称图形但不是轴对称图形
B.是轴对称图形但不是中心对称图形
C.既是轴对称图形又是中心对称图形
D.既不是轴对称图形也不是中心对称图形
(3)如图2,当,△ADE的周长是否会发生变化,如会变化,说明理由,如不会变化,求出它的周长.
如图,在三角形纸片ABC中,∠BAC为锐角,AB=12cm,AC=15cm.按下列步骤折叠:第一次,把∠B折叠使点B落在AC边上,折痕为AD,交BC于点D;第二次折叠,使点A与点D重合,折痕分别交AB、AC于点E、F,EF与AD交于点O,展开后,连结DE、DF.
(1)试判断四边形AEDF的形状,并说明理由;
(2)求AF的长.
如图,直角坐标系中,Rt△DOC的直角边OC在轴上,∠OCD=90°,OD=6,OC=3,现将△DOC绕原点O按逆时针方向旋转,得到△AOB,且点A在轴上.
(1)请直接写出:∠A= °;
(2)请求出线段OD扫过的面积.
在下图的网格中有一个三角形OAB,请你在网格中分别按下列要求画出图形
①画出向左平移3个单位后的三角形;
②画出绕点旋转180°后的三角形;
③画出沿y轴翻折后的图形.
本题满分11分.(为方便答题,可在答题卡上画出你认为必要的图形)
在Rt△ABC中,∠A=90°,AC=AB=4,D,E分别是边AB,AC的中点.若等腰Rt△ADE绕点A逆时针旋转,得到等腰RtRt△AD1E1,设旋转角为α(0<α≤180°),记直线BD1与CE1的交点为P.
(1)如图1,当α=90°时,线段BD1的长等于 ,线段CE1的长等于 ;(直接填写结果)
(2)如图2,当α=135°时,求证:BD1=CE1 ,且BD1⊥CE1 ;
(3)求点P到AB所在直线的距离的最大值.(直接写出结果)
如图(1)将△ABC绕点A按逆时针方向旋转θ度,并使各边长变为原来的n倍得△AB′C′ ,∠BAB′ =θ,,我们将这种变换记为[θ,n] .如图(2),在△DEF中,∠DFE=90°,将 △DEF绕点D旋转,作变换[60°,n]得△DE′F′,如果点E、F、恰好在同一直线上,那么n= .
如图,在等边△ABC内有一点D,AD=5,BD=6,CD=4,将△ABD绕点A逆时针旋转,使AB与AC重合,点D旋转到点E,则∠CDE的正切值为 。
如图1,在Rt△ABC中,∠B=90°,BC=2AB=8,点D,E分别是边BC,AC的中点,连接DE. 将△EDC绕点C按顺时针方向旋转,记旋转角为α.
(1)问题发现
① 当时,;② 当时,
(2)拓展探究
试判断:当0°≤α<360°时,的大小有无变化?请仅就图2的情况给出证明.
(3)问题解决
当△EDC旋转至A、D、E三点共线时,直接写出线段BD的长.
在正方形ABCD中,BD是一条对角线.点P在射线CD上(与点C,D不重合),连接AP,平移△ADP,使点D移动到点C,得到△BCQ,过点Q作QH⊥BD于点H,连接AH、PH.
(1)若点P在线CD上,如图1,
①依题意补全图1;②判断AH与PH的数量关系与位置关系并加以证明;
(2)若点P在线CD的延长线上,且∠AHQ=152°,正方形ABCD的边长为1,请写出求DP长的思路.(可以不写出计算结果)
平面上,矩形ABCD与直径为QP的半圆K如图摆放,分别延长DA和QP交于点O,且∠BOQ=60°,OQ=OD=3,OP=2,OA=AB=1.让线段OD及矩形ABCD位置固定,将线段OQ连带着半圆K一起绕着点O按逆时针方向形如旋转,设旋转角为α(0°≤α≤60°).
发现(1)当α=0°,即初始位置时,点P____直线AB上.(填“在”或“不在”)求当α是多少时,OQ经过点B?
(2)在OQ旋转过程中.简要说明α是多少时,点P,A间的距离最小?并指出这个最小值:
(3)如图,当点P恰好落在BC边上时.求α及S阴影.
拓展如图.当线段OQ与CB边交于点M,与BA边交于点N时,设BM=x(x>0),用含x的代数式表示BN的长,并求x的取值范围.
探究当半圆K与矩形ABCD的边相切时,求sin α的值.
如图,已知直线l∥l,一个45°角的顶点A在l上,过A作AD⊥l,垂足为D,AD=6.将这个角绕顶点A旋转(角的两边足够长).
(1)如下图,旋转过程中,若角的两边与l分别交于B、C,且AB=AC,求BD的长.
为了解决这个问题,下面提供一种解题思路:如图,作∠DAP=45°,AP与l相交于点P,过点C作CQ⊥AP于点Q.∵∠DAP=∠BAC =45°,∴∠BAD=∠CAQ, 请你接下去完成解答.
(2)旋转过程中,若角的两边与l分别交于E、F(E在F左面),且AE>AF,DF= 2,求DE的长.请你借鉴(1)的做法在备用图中画图并解答这个问题.
规定:在平面直角坐标系xOy中,“把某一图形先沿x轴翻折,再沿y轴翻折”为一次变化.如图,已知正方形ABCD,顶点A(1,3),C(3,1).若正方形ABCD经过一次上述变化,则点A变化后的坐标为 ,如此这样,对正方形ABCD连续做2015次这样的变化,则点D变化后的坐标为 .
如图1,在Rt△ABC中,∠ACB=90°,E是边AC上任意一点(点E与点A,C不重合),以CE为一直角边作Rt△ECD,∠ECD=90°,连接BE,AD.
(1)若CA=CB,CE=CD
①猜想线段BE,AD之间的数量关系及所在直线的位置关系,直接写出结论;
②现将图1中的Rt△ECD绕着点C顺时针旋转锐角α,得到图2,请判断①中的结论是否仍然成立,若成立,请证明;若不成立,请说明理由;
(2)若CA=8,CB=6,CE=3,CD=4,Rt△ECD绕着点C顺时针转锐角α,如图3,连接BD,AE,计算的值.
试题篮
()