(本小题满分9分)在锐角△ABC中,AB=4,BC=5,∠ACB=45°,将△ABC绕点B按逆时针方向旋转,得到△A1BC1.
(1)如图1,当点C1在线段CA的延长线上时,求∠CC1A1的度数;
(2)如图2,连接AA1,CC1.若△ABA1的面积为4,求△CBC1的面积;
(3)如图3,点E为线段AB中点,点P是线段AC上的动点,在△ABC绕点B按逆时针方向旋转过程中,点P的对应点是点P1,求线段EP1长度的最大值与最小值.
如图1,已知△BAD和△BCE均为等腰直角三角形,∠BAD=∠BCE=90°,点M为DE的中点.过点E与AD平行的直线交射线AM于点N.
(1)当A,B,C三点在同一直线上时(如图1),求证:M为AN的中点;
(2)将图1中△BCE绕点B旋转,当A,B,E三点在同一直线上时(如图2),求证:△CAN为等腰直角三角形;
(3)将图1中△BCE绕点B旋转到图3的位置时,(2)中的结论是否仍然成立?若成立,试证明之;若不成立,请说明理由.
将一副三角尺(在Rt△ABC中,∠ACB=90°,∠B=60°;在Rt△DEF中,∠EDF=90°,∠E=45°)按如图①摆放,点D为AB的中点,DE交AC于点P,DF经过点C.
(1)求∠ADE的度数;
(2)将△DEF绕点D顺时针方向旋转角α(0°<α<60°),此时的等腰直角三角尺记为△DE′F′,DE′交AC于点M,DF′交BC于点N,如图②,试判断的值是否随着α的变化而变化?如果不变,请求出的值;如果变化,请说明理由.
在中,,,将一块等腰直角三角板的直角顶点放在斜边的中点处,将三角板绕点旋转,三角板的两直角边分别交、或其延长线于、两点,如图①与②是旋转三角板所得图形的两种情况.
(1)三角板绕点旋转,是否能成为等腰直角三角形?若能,指出所有情况(即给出是等腰直角三角形时的长),若不能,请说明理由;
(2)三角板绕点旋转,线段和之间有什么数量关系?用图①或②加以证明;
(3)若将三角板的直角顶点放在斜边上的点处(如图③),当时,和有怎样的数量关系?证明你发现的结论.
在正方形ABCD中,对角线AC与BD交于点O;在Rt△PMN中,∠MPN90°.
(1)如图1,若点P与点O重合且PM⊥AD、PN⊥AB,分别交AD、AB于点E、F,请直接写出PE与PF的数量关系;
(2)将图1中的Rt△PMN绕点O顺时针旋转角度α(0°<α<45°).
①如图2,在旋转过程中(1)中的结论依然成立吗?若成立,请证明;若不成立,请说明理由;
②如图2,在旋转过程中,当∠DOM15°时,连接EF,若正方形的边长为2,请直接写出线段EF的长;
③如图3,旋转后,若Rt△PMN的顶点P在线段OB上移动(不与点O、B重合),当BD3BP时,猜想此时PE与PF的数量关系,并给出证明;当BDm·BP时,请直接写出PE与PF的数量关系.
已知直线m∥n,点C是直线m上一点,点D是直线n上一点,CD与直线m、n不垂直,点P为线段CD的中点.
(1)操作发现:直线l⊥m,l⊥n,垂足分别为A、B,当点A与点C重合时(如图①所示),连接PB,请直接写出线段PA与PB的数量关系: .
(2)猜想证明:在图①的情况下,把直线l向上平移到如图②的位置,试问(1)中的PA与PB的关系式是否仍然成立?若成立,请证明;若不成立,请说明理由.
(3)延伸探究:在图②的情况下,把直线l绕点A旋转,使得∠APB=90°(如图③所示),若两平行线m、n之间的距离为2k.求证:PA•PB=k•AB.
(黄石)在△AOB中,C,D分别是OA,OB边上的点,将△OCD绕点O顺时针旋转到△OC′D′.
(1)如图1,若∠AOB=90°,OA=OB,C,D分别为OA,OB的中点,①AC′=BD′;②AC′⊥BD′;
(2)如图2,若△AOB为任意三角形且∠AOB=θ,CD∥AB,AC′与BD′交于点E,猜想∠AEB=θ是否成立?请说明理由.
如图1,在正方形ABCD中,E、F分别为BC、CD的中点,连接AE、BF,交点为G.
可证:AE⊥BF;
(1)将△ABE绕点A逆时针方向旋转,使边AB正好落在AE上,得到△AHM,如图2,若AM和BF相交
于点N,当正方形ABCD的面积为4时,求四边形GHMN的面积.
(2)将△BCF沿BF对折,得到△BPF,如图3,延长FP交BA的延长线于点Q,求sin∠BQP的值;
(本小题7分)如图1,已知是等腰直角三角形,,点是的中点.作
正方形,使点、分别在和上,连接 ,.
(1)试猜想线段和的数量关系是 并证明.
(2)将正方形绕点逆时针方向旋转,判断(1)中的结论是否仍然成立?请利用图2证明你的结论;
(本小题6分)如右图,在每个小正方形边长为1的方格纸中,△ABC的顶点都在方格纸格点上.将△ABC向左平移2格,再向上平移4格.
(1)请在图中画出平移后的△A′B′C′,
(2)再在图中画出△A′B′C′的高C′D′,并求出△ABC在整个平移过程中线段AC扫过的面积
已知,正六边形ABCDEF在直角坐标系内的位置如图所示,A(﹣2,0),点B在原点,把正六边形ABCDEF沿x轴正半轴作无滑动的连续翻转,每次翻转60°,经过2015次翻转之后,点B的坐标是 .
(本小题满分10分)如图1,△ABC是等腰直角三角形,四边形ADEF是正方形,D、F分别在AB、AC边上,此时BD=CF,BD⊥CF成立.
(1)当正方形ADEF绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF,BD⊥CF成立吗?若成立,请证明;若不成立,请说明理由.
(2)当正方形ADEF绕点A逆时针旋转45°时, AC与BG的交点为M, 当AB=4,AD=时,求线段CM的长.
如图,△ABC三个顶点坐标分别为,,,将△ABC绕点B顺时针旋转一定角度后使点A落在轴上,与此同时顶点C恰好落在的图像上, 则k的值为 .
如图,四边形ABCD是矩形,AB=6,BC=8,点E在线段AD上,把△ABE沿直线BE翻折,点A落在点,的延长线交BC于点F,
(1)如图(1)求证FE=FB;
(2)当点E在边AD上移动时,点的位置也随之变化,
①当点恰好落在线段BD上时,如图(2),求AE的长;
②在运动变化过程中,设,,求与的函数关系式,试判断能否平分矩形ABCD的面积,若能,求出的值,若不能,则说明理由;
(3)当点E在边AD上运动时,点D与点之间的距离也随之变化,请直接写出点D与点之间距离的变化范围.
试题篮
()