如图,在边长为1的小正方形组成的网格中,A、B两点均在格点上,且坐标分别为A(3,2);B(1,3).
(1)点B关于y轴对称的点的坐标为 .
(2)在网格线中描出点A、B,并画出△AOB,若将△AOB向左平移3个单位,再向上平移2个单位得到△A1O1B1,则点A1点坐标为 .
按下列要求画图:
(1)将①中的图平移至②中的方格中;
(2)将平移后的图形沿虚线翻折到③的方格中;
(3)将翻折后的图形绕0点旋转180度到图④的方格中.
如图,在平面直角坐标系中,A(﹣3,2),B(﹣4,﹣3),C(﹣1,﹣1).
(1)在图中作出△ABC关于y轴对称的△A1B1C1;写出点△A1,B1,C1的坐标(直接写答案):A1 ;B1 ;C1 ;
(2)△A1B1C1的面积为 ;
(3)在y轴上画出点P,使PB+PC最小.
如图,在边长为1的正方形组成的网格中,△AOB的顶点均在格点上,点A、B的坐标分别是A (3,2)、B(1,3)。△AOB绕点O 逆时针旋转90°后得到△A1OB1.
(1)画出旋转后的图形;
(2)求线段OB在旋转过程中所扫过的图形面积(写过程)。
如图,在平面直角坐标系中完成下列各题:(不写作法,保留作图痕迹)
(1)在图1中作出关于y轴对称的,并写出、、的坐标;
(2)在图2中x轴上画出点,使的值最小.
如图,在平面直角坐标系xoy中,A(-1,5),B(-1,0),C(-4,3)。
(1)求出△ABC的面积;
(2)在图中作出△ABC关于y轴的对称图形△A1B1C1;
(3)写出点A1,B1,C1的坐标。
如图,已知△ABC的三个顶点的坐标分别为A(﹣6,0)、B(﹣2,3)、C(﹣1,0).
(1)请直接写出与点B关于坐标原点O的对称点B1的坐标;
(2)将△ABC绕坐标原点O逆时针旋转90°.画出对应的△A′B′C′图形,直接写出点A的对应点A′的坐标;
(3)若四边形A′B′C′D′为平行四边形,请直接写出第四个顶点D′的坐标.
在如图所示的直角坐标系中,每个小方格都是边长为1的正方形,△ABC的顶点均在格点上,点A的坐标是.
(1)将△ABC沿y轴正方向平移3个单位得到△,画出△,并写出点的坐标;
(2)画出△关于y轴对称的△,并写出点的坐标.
如图,在Rt△ABC中,∠ACB=90°,点D、F分别在AB、AC上,CF=CB,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CE,连接EF.
(1)请你探究∠CEF与∠ADC的数量关系,并证明你的结论;
(2)若EF∥CD,求∠BDC的度数.
探索与研究:
方法1:如图(a),对任意的符合条件的直角三角形绕其锐角顶点旋转90°所得,所以∠BAE=90°,且四边形ACFD是一个正方形,它的面积和四边形ABFE面积相等,而四边形ABFE面积等于Rt△BAE和Rt△BFE的面积之和,根据图示写出证明勾股定理的过程;
方法2:如图(b),是任意的符合条件的两个全等的Rt△BEA和Rt△ACD拼成的,你能根据图示再写一种证明勾股定理的方法吗?
如图,在长度为1个单位长度的小正方形组成的正方形网格中,点A、B、C在小正方形的顶点上.
(1)在图中画出与△ABC关于直线成轴对称的△A;
(2)线段被直线 ;
(3)在直线上找一点P,使PB+PC的长最短,并算出这个最短长度.
如图,将Rt△ABC绕直角顶点C顺时针方向旋转90°到△A′B′C的位置,D,D′分别是AB,A′B′的中点,且,已知AC=8cm,BC=6cm,求线段DD′的长.
如图,在平面直角坐标系中,A(-1,5),B(-1,0),C(-4,3)
(1)在图中作出关于轴的对称图形.
(2)写出点的坐标.
(3)求出的面积.
试题篮
()