暑假里某天,小龙、小虎兄弟俩和妈妈一起去姥姥家玩,并且还要去河边游泳,如图要求所走的路程最近。
⑴如果先游泳,后到姥姥家,如何走?
⑵如果先去姥姥家,再游泳,如何走?(共10分)
A·小龙小虎家 A·小龙小虎家
B·姥姥家 B·姥姥家
L河 L河
一次数学竞赛,共有20道选择题,评分标准是:每答对1题得5分,答错1题倒扣2分,不答得0分。小英有1道题没有答,则她至少答对 道题,成绩才能在70分以上.
下列是三种化合物的结构式及分子式,结构式分子式
(1)请按其规律,写出后一种化合物 的分子式 。
(2)每一种化合物的分子式中H的个数m是否是C的个数n的函数?如果是,写出关系式 。
如图,物理学家在对原子结构研究中,在一个宽的矩形粒子加速器中,一中子从点(点在长边上)出发沿虚线射向边,然后反弹到边上的点. 如果,.那么点与点的距离为 。
学校植物园沿路护栏纹饰部分设计成若干个全等菱形图案,每增加一个菱形图案,纹饰长度就增加dcm,如图所示.已知每个菱形图案的边长cm,其一个内角为60°,若纹饰的总长度L=5030 cm,当d=20时,则需要 个这样的菱形图案.
如图1,△ABC中,AB=AC=5cm,BC=6cm,边长为2cm的菱形DEFG两边DG、DE分别在AC、AB上.若菱形DEFG以1cm/s的速度沿射线AC方向平移.
(1)经过 ▲ 秒菱形DEFG的顶点F恰好在BC上;
(2)求菱形DEFG的面积;
(3)设菱形DEFG与△ABC的重合部分为Scm2,菱形DEFG平移的时间为t秒.求S与t的函数关系式.
(8分)A、B两地相距630千米,客车、货车分别从A、B两地同时出发,匀速相向行驶.货车两小时可到达途中C站,客车需9小时到达C站(如图1所示).货车的速度是客车的 ,客、货车到C站的距离分别为y1、y2(千米),它们与行驶时间x(小
时)之间的函数关系如图2所示.
(1)求客、货两车的速度;
(2)求两小时后,货车到C站的距离y2与行驶时间x之间的函数关系式;
(3)如图2,两函数图象交于点E,求E点坐标,并说明它所表示的实际意义.
我们通常可以对一些图形进行剪切,并利用图形的轴对称、平移、旋转等进行图案设计,如图1中,可以沿线段AE剪切矩形ABCD,再将△ABE通过变换与梯形
AECD拼接成等腰梯形.请按下列要求进行图案设计:
(1)把矩形剪切2次拼接成一个菱形,请在图2中画出剪切线,再画出拼接示意图;
(2)把矩形剪切1次拼接成一个菱形,请在图3中画出剪切线,再画出拼接示意图.
如图,要建一个面积为的长方形养鸡场(分为两个区域),养鸡场的一边靠着一面长为的墙,另几条边用总长为的竹篱笆围成,每块区域的前面各开一个宽的门.求这个养鸡场的长与宽.
如图,为了测量山坡AQ上的小树BC(竖直向上)的高,测得坡角∠PAQ为30°,坡面距离AB为10米,并测得视线AC与坡面AB的夹角为20°.求小树的高BC.(参考数据: ,,.精确到0.1米)
在平面上有且只有4个点,这4个点中有一个独特的性质:连结每两点可得到6条线段,这6条线段有且只有两种长度.我们把这四个点称作准等距点.例如正方形ABCD的四个顶点(如图1),有AB=BC=CD=DA,AC=BD.其实满足这样性质的图形有很多,如图2中A、B、C、O四个点,满足AB=BC=CA,OA=OB=OC;如图3中A、B、C、O四个点,满足OA=OB=OC=BC,AB=AC.
(1)如图,若等腰梯形ABCD的四个顶点是准等距点,且AD∥BC.
①写出相等的线段(不再添加字母);
②求∠BCD的度数.
(2)请再画出一个四边形,使它的四个顶点为准等距点,并写出相等的线段.
某农户2008年的年收入为5万元,由于党的惠农政策的落实,2010年年收入增
加到7.2万元,则平均每年的增长率是 ▲____.
如图,南京绿博园中有一条人工河,河的两岸PQ、MN互相平行,河岸PQ上有一排间隔为50米的彩灯柱C、D、E、……,某人在河岸MN的A处测得∠DAN=21º,然后沿河岸走了175米到达B处,测得∠CBN=45º,求这条河的宽度.(参考数据:,)
如图,一部起重机的机身AD高22m,吊杆AB长40m,吊杆与水平线的夹角∠BAC可从30°升到80°.分别求起重机起吊过程中的最大水平距离和起重机起吊的离地面最大高度(吊钩本身的长度和所挂重物的高度忽略不计)。
(结果精确到0.1米,sin80°=0.9848,cos80°=0.1736,
试题篮
()