先阅读下列材料,再解答后面的问题
材料:一般地,n个相同的因数相乘:。如23=8,此时,3叫做以2为底8的对数,记为。一般地,若,则n叫做以为底b的对数,记为,则4叫做以3为底81的对数,记为。
问题:
计算以下各对数的值:log24= log216= log264=
观察(1)中三数4、16、64之间满足怎样的关系式?log24、log216、log264之间又满足怎样的关系式?
由(2)的结果,你能归纳出一个一般性的结论吗? logaM+logaN= (a>0且a≠1,M>0,N>0)
根据幂的运算法则:an·am=an+m以及对数的含义证明上述结论
在形如的式子中,我们已经研究过两种情况:①已知a和b,求N,这是乘方运算;②已知b和N,求a,这是开方运算;
现在我们研究第三种情况:已知a和N,求b,我们把这种运算叫做对数运算。
定义:如果(a>0,a≠1,N>0),则b叫做以a为底N的对数,记作:,例如:求,因为=8,所以=3;又比如∵,∴.
根据定义计算:(本小题6分)
①=____;②= ;
③如果,那么x= 。
设则(a>0,a≠1,M、N均为正数),
∵,∴∴,
即
这是对数运算的重要性质之一,进一步,我们还可以得出:
= .(其中M1、M2、M3、……、Mn均为正数,a>0,a≠1)(本小题2分)
请你猜想: (a>0,a≠1,M、N均为正数).(本小题2分)
某一工程,在工程招标时,接到甲、乙两个工程队的投标书.施工一天,需付甲工程队工程款1.2万元,乙工程队工程款0.5万元.工程领导小组根据甲、乙两队的投标书测算,有如下方案:
甲队单独完成这项工程刚好如期完成,乙队单独完成这项工程要比规定日期多用6天。这项工程工期是多少天?
若甲、乙两队合做3天,余下的工程由乙队单独做也正好如期完成.
试问:在不耽误工期的前提下,你觉得哪一种施工方案最节省工程款?请说明理由
如图1,点O为直线AB上一点,过点O作射线OC,使∠AOC=60°.将一把直角三角尺的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方,其中∠OMN=30°。
(1)将图1中的三角尺绕点O顺时针旋转至图2,使一边OM在∠BOC的内部,且恰好平分∠BOC,求∠CON的度数;
(2)将图1中的三角尺绕点O按每秒10°的速度沿顺时针方向旋转一周,在旋转的过程中,在第 秒时,边MN恰好与射线OC平行;在第 秒时,直线ON恰好平分锐角∠AOC。(直接写出结果);
(3)将图1中的三角尺绕点O顺时针旋转至图3,使ON在∠AOC的内部,请探究∠AOM与∠NOC之间的数量关系,并说明理由.
璧山观音塘湿地公园是目前重庆最大的湿地公园,该公园以众多珍稀动植物和独特的灯光和喷泉,吸引着越来越多的游客前往游玩。为了应对游客在游玩过程中的意外伤害,公园决定在形状为如图所示的四边形中央广场内修建一个便民取药点,以便在里面配置各种应急药物。现要求该取药点离两个广场入口、的距离相等,且离观赏点的距离恰好等于、间的距离。请在原图上利用尺规作图作出取药点的位置。(要求:不写已知、求作、作法和结论,保留作图痕迹,必须用铅笔作图)
某超市今年2月份的销售收入比1月份有所下降.3月份的销售收入比1月份的销售收入增长了,且比2月份的销售收入翻了一番.
求该超市今年2月份的销售收入比1月份下降了百分之几
若该超市今年1~3月份每月的销售分别获得了、、的利润,求该超市今年第一季度销售的利润率.(,)
现提供两种移动电话计费方式如下表:
请依据上表用数学语言简要描述两种方式的收费情况。
一个月内本地通话150分和200分,按方式一需要交费多少?按方式二呢?
对于某个本地通话时间,会出现按两种方式收费一样多吗?你知道怎样选择计费方式更省钱吗?
某车间生产螺钉和螺母,每人每天平均生产1200个螺钉或2000个螺母。为了使每天的产品刚好是一个螺钉与两个螺母配套,请你给22名工人安排一下分工。
2004年12月28日,我国第一条城际铁路-----合宁铁路(合肥至南京)正式开工建设,建成后,合肥至南京的铁路运行里程将由目前的缩短至,设计时速是现行时速的倍。旅客列车运行时间将因此缩短约,求合宁铁路的设计时速
(本题8分)有这样的一道题:“计算:的值,其中x=2010”.甲同学把“x=2010”错抄成“x=2001”,但他的计算结果也是正确的。你说这是怎么回事?
如图,已知抛物线y=x2+bx-3a过点A(1,0),B(0,-3),与x轴交于另一点C.
(1)求抛物线的解析式;
(2)若在第三象限的抛物线上存在点P,使△PBC为以点B为直角顶点的直角三角形,
求点P的坐标;
(3)在(2)的条件下,在抛物线上是否存在一点Q,使以P,Q,B,C为顶点的四边形
为直角梯形?若存在,请求出点Q的坐标;若不存在,请说明理由.
如图,在靠墙(墙长为18m)的地方围建一个矩形的养鸡场,另三边用竹篱笆围成,如果竹篱笆总长为35m,求鸡场的长y (m)与宽x (m)的函数关系式,并求自变量的取值范围。
小王家是新农村建设中涌现出的“养殖专业户”.他准备购置80只相同规格的网箱,养殖A、B两种淡水鱼(两种鱼不能混养).计划用于养鱼的总投资不少于7万元,但不超过7.2万元,其中购置网箱等基础建设需要1.2万元.设他用x只网箱养殖A种淡水鱼,目前平均每只网箱养殖A、B两种淡水鱼所需投入及产业情况如下表:
项目类别 |
鱼苗投资 (百元) |
饲料支出 (百元) |
收获成品鱼(千克) |
成品鱼价格 (百元/千克) |
A种鱼 |
2.3 |
3 |
100 |
0.1 |
B种鱼 |
4 |
5.5 |
55 |
0.4 |
(1)小王有哪几种养殖方式?
(2)哪种养殖方案获得的利润最大?
(3)根据市场调查分析,当他的鱼上市时,两种鱼的价格会有所变化,A种鱼价格上涨a%(0<a<50),B种鱼价格下降20%,考虑市场变化,哪种方案获得的利润最大?(利润=收入-支出.收入指成品鱼收益,支出包括基础建设投入、鱼苗投资及饲料支出)
试题篮
()