优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 二次函数在给定区间上的最值
初中数学

如图甲,分别以两个彼此相邻的正方形OABC与CDEF的边OC、OA所在直线为轴、轴建立平面直角坐标系(O、C、F三点在x轴正半轴上).若⊙P过A、B、E三点(圆心在轴上),抛物线经过A、C两点,与轴的另一交点为G,M是FG的中点,正方形CDEF的面积为1.
(1)求B点坐标;
(2)求证:ME是⊙P的切线;
(3)设直线AC与抛物线对称轴交于N,Q点是此对称轴上不与N点重合的一动点,①求△ACQ周长的最小值;②若FQ=,△ACQ的面积 S△ACQ,直接写出之间的函数关系式.

 

  • 题型:未知
  • 难度:未知

如图,抛物线y=+bx+c的顶点为C(0,-),与x轴交于点A、B,连接AC、BC,得等边△ABC. T点从B点出发,以每秒1个单位的速度向点A运动,同时点S从点C出发,以每秒个单位的速度向y轴负方向运动,TS交射线BC于点D,当点T到达A点时,点S停止运动. 设运动时间为t秒.

(1)求二次函数的解析式;
(2)设△TSC的面积为S,求S关于t的函数解析式;
(3)以点T为圆心,TB为半径的圆与射线BC交于点E,试说明:在点T运动的过程中,线段ED的长是一定值,并求出该定值.

  • 题型:未知
  • 难度:未知

在平面直角坐标系xOy中,已知抛物线的对称轴是,并且经过点(-2,-5).

(1)求此抛物线的解析式;
(2)设此抛物线与x轴交于AB两点(点A在点B的左侧),与y轴交于C点,D是线段BC上一点(不与点BC重合), 若以BOD为顶点的三角形与△BAC相似,求点D的坐标;
(3)点Py轴上,点M在此抛物线上,若要使以点PMAB为顶点的四边形是平行四边形,请你直接写出点M的坐标.

  • 题型:未知
  • 难度:未知

已知如图,二次函数图象的顶点为,与轴交于两点(点右侧),点关于直线:对称.

(1)求两点坐标,并证明点在直线上;
(2)求二次函数解析式;
(3)过点作直线交直线点,分别为直线和直线上的两个动点,连接,求和的最小值.

  • 题型:未知
  • 难度:未知

如图,已知:△ABC为边长是的等边三角形,四边形DEFG为边长是6的正方形.现将等边△ABC和正方形DEFG按如图1的方式摆放,使点C与点E重合,点B、C(E)、F在同一条直线上,△ABC从图1的位置出发,以每秒1个单位长度的速度沿EF方向向右匀速运动,当点C与点F重合时暂停运动,设△ABC的运动时间为t秒().

在整个运动过程中,设等边△ABC和正方形DEFG重叠部分的面积为S,请直接写出S与t之间的函数关系式;
如图2,当点A与点D重合时,作的角平分线EM交AE于M点,将△ABM绕点A逆时针旋转,使边AB与边AC重合,得到△ACN.在线段AG上是否存在H点,使得△ANH为等腰三角形.如果存在,请求出线段EH的长度;若不存在,请说明理由.
如图3,若四边形DEFG为边长为的正方形,△ABC的移动速度为每秒个单位长度,其余条件保持不变.△ABC开始移动的同时,Q点从F点开始,沿折线FG-GD以每秒个单位长度开始移动,△ABC停止运动时,Q点也停止运动.设在运动过程中,DE交折线BA-AC于P点,则是否存在t的值,使得,若存在,请求出t的值;若不存在,请说明理由

  • 题型:未知
  • 难度:未知

(本题14分)如图,已知正比例函数和反比例函数的图象都经过点.

(1)求正比例函数和反比例函数的解析式;
(2)把直线OA向下平移后与反比例函数的图象交于点,求的值和这个一次函数的解析式;
(3)第(2)问中的一次函数的图象与轴、轴分别交于CD,求过ABD三点的二次函数的解析式;
(4)在第(3)问的条件下,二次函数的图象上是否存在点E,使的面积的面积S满足:?若存在,求点E的坐标;若不存在,请说明理由.

  • 题型:未知
  • 难度:未知

如图所示,在平面直角坐标系中,顶点为()的抛物线交轴于点,交轴于两点(点在点的左侧), 已知点坐标为().

(1)求此抛物线的解析式;
(2)过点作线段的垂线交抛物线于点
如果以点为圆心的圆与直线相切,请判断抛物
线的对称轴与⊙有怎样的位置关系,并给出证明;
(3)已知点是抛物线上的一个动点,且位于
两点之间,问:当点运动到什么位置时,
面积最大?并求出此时点的坐标和的最大面积.

  • 题型:未知
  • 难度:未知

(1)探究新知:


①如图,已知ADBCADBC,点MN是直线CD上任意两点.试判断△ABM与△ABN的面积是否相等。 
②如图,已知ADBEADBEABCDEF,点M是直线CD上任一点,点G是直线EF上任一点.试判断△ABM与△ABG的面积是否相等,并说明理由.  
(2)结论应用:   
如图③,抛物线的顶点为C(1,4),交x轴于点A(3,0),交y轴于点D.试探究在抛物线上是否存在除点C以外的点E,使得△ADE与△ACD的面积相等? 若存在,请求出此时点E的坐标,若不存在,请说明理由.

  • 题型:未知
  • 难度:未知

如图,已知二次函数的图象与坐标轴交于点A(-1, 0)和点

B(0,-5).
(1)求该二次函数的解析式;
(2)已知该函数图象的对称轴上存在一点P,使得△ABP的周长最小.请求出点P的坐标.

  • 题型:未知
  • 难度:未知

如图,抛物线经过点A(1,0)和点P(3,4).
求此抛物线的解析式,写出抛物线与x轴的交点坐标和顶点坐标,并依此在所给平面直角坐标系中画出抛物线的大致图象;
若抛物线与轴的另一个交点为B,现将抛物线向射线AP方向平移,使P点落在M点处,同时抛物线上的B点落在点D(BD∥PM)处.设抛物线平移前P、B之间的曲线部分与平移后M、D之间的曲线部分,与线段MP、BD所围成的面积为m, 线段 PM为n,求m与n的函数关系式.

  • 题型:未知
  • 难度:未知

抛物线轴于两点,交轴于点,对称轴为直线。且A、C两点的坐标分别为

求抛物线的解析式;
在对称轴上是否存在一个点,使的周长最小.若存在,请求出点的坐标;若不存在,请说明理由.

  • 题型:未知
  • 难度:未知

如图,在坐标系中,菱形ABCD的边BC与x轴重合,点B与原点重合,AB=10, ∠ABC=60°.动点P从点B出发沿BC边以每秒1个单位长的速度匀速运动;动点Q从点D出发沿折线DCCBBA以每秒3个单位长的速度匀速运动,过点PPFBC,交折线ABAC于点E,交直线AD于点F.若PQ两点同时出发,当其中一点到达终点时整个运动随之停止,设运动时间为t秒.

(1)写出点A与点D的坐标
(2)当t=3秒时,试判断QEAB之间的位置关系?
(3)当Q在线段DC上运动时,若△PQF为等腰三角形,求t的值;
(4)设△PQE的面积为S,求St的函数关系式;

  • 题型:未知
  • 难度:未知

如图,点在抛物线上,过点作与轴平行的直线交抛物线于点,延长分别与抛物线相交于点,连接,设点的横坐标为,且
时,求点的坐标;
为何值时,四边形的两条对角线互相垂直;
猜想线段之间的数量关系,并证明你的结论.

  • 题型:未知
  • 难度:未知

(本小题满分8分)
已知抛物线yax2bx+6与x轴交于AB两点(点A在原点的左侧,点B在原点的右侧),与y轴交于点C,且OB=OCtan∠ACO=,顶点为D
(1)求点A的坐标.
(2)求直线CDx轴的交点E的坐标.
(3)在此抛物线上是否存在一点F使得以点ACEF为顶点的四边形是平行四边形?若存在,请求出点F的坐标;若不存在,请说明理由.
(4)若点M(2,y)是此抛物线上一点,点N是直线AM上方的抛物线上一动点,当点N运动到什么位置时,四边形ABMN的面积S最大? 请求出此时S的最大值和点N的坐标.
(5)点P为此抛物线对称轴上一动点,若以点P为圆心的圆与(4)中的直线AMx轴同时相切,则此时点P的坐标为      .

  • 题型:未知
  • 难度:未知

已知抛物线y=﹣x2+bx+c的对称轴为直线x=1,最小值为3,此抛物线与y轴交于点A,顶点为B,对称轴BC与x轴交于点C.
(1)求抛物线的解析式.
(2)如图1.求点A的坐标及线段OC的长;
(3)点P在抛物线上,直线PQ∥BC交x轴于点Q,连接BQ.
①若含45°角的直角三角板如图2所示放置.其中,一个顶点与点C重合,直角顶点D在BQ上,另一个顶点E在PQ上.求直线BQ的函数解析式;
②若含30°角的直角三角板一个顶点与点C重合,直角顶点D在直线BQ上,另一个顶点E在PQ上,求点P的坐标.

  • 题型:未知
  • 难度:未知

初中数学二次函数在给定区间上的最值试题