优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 圆幂定理 / 解答题
初中数学

已知,如图,以点P(﹣1,0)为圆心的圆,交x轴于A、C两点(A在C的左侧),交y轴于B、D两点(B在D的上方),且∠BAC=30°,

(1)如图①求⊙P的半径及点B的坐标;
(2)点Q是⊙P上任意一点,求△ABQ面积S的取值范围;
(3)如图②,已知点M(-5,0),过M作直线y=kx+b交y轴于点N,
①若MN//AB,试判断MN与⊙P的位置关系,并说明理由;
②在该直线上存在一点G,使以G、A、C为顶点的三角形是直角三角形,且满足条件的点G有且只有三个不同位置,求直线MN的函数关系式.

  • 题型:未知
  • 难度:未知

如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.已知AB=8,CD=2.

(1)求⊙O的半径; 
(2)求sin∠BCE的值.

  • 题型:未知
  • 难度:未知

如图,三角形ABC内接于圆O,AB=8,AC=6,D是AB边上的一点,P是优弧BAC的中点,连结PA,PB,PC,PD.

(1)当AD的长度为多少时三角形PAD是以AD为底边的等腰三角形?并证明.
(2)在(1)的条件下,若cos∠PCB=,求PA的长.

  • 题型:未知
  • 难度:未知

某学习小组在探索“各内角都相等的圆内接多边形是否为正多边形”时,有如下探讨:
甲同学:我发现这种多边形不一定是正多边形.如圆内接矩形不一定是正方形.
乙同学:我知道边数为3时,它是正三角形;我想,边数为5时,它可能也是正五边形…
丙同学:我发现边数为6时,它也不一定是正六边形.如图2,△ABC是正三角形,弧AD、弧BE、弧CF均相等,这样构造的六边形ADBECF不是正六边形.

(1)如图1,若圆内接五边形ABCDE的各内角均相等,则∠ABC=      °,并简要说明圆内接五边形ABCDE为正五边形的理由;
(2)如图2,请证明丙同学构造的六边形各内角相等;
(3)根据以上探索过程,就问题“各内角都相等的圆内接多边形是否为正多边形”的结论与“边数n(n≥3,n为整数)”的关系,提出你的猜想(不需证明).

  • 题型:未知
  • 难度:未知

如图,菱形ABCD的对角线AC、BD相交于点E,F是BA延长线上一点,连接EF,以EF为直径作⊙O,交DC于D、G两点,AD分别与EF,GF交于I、H两点.

(1)求证:AE∥FD;
(2)试判断AF和AB的数量关系,并证明你的结论;
(3)当G为线段DC的中点时,
①求证:AE=IE;
②设AC=12,BC=10,求GF的长.

  • 题型:未知
  • 难度:未知

如图,PB为⊙O的切线,B为切点,直线PO交⊙O于点E,F,过点B作PO的垂线BA,垂足为点D,交⊙O于点A,延长AO与⊙O交于点C,连接BC,AF.

(1)求证:直线PA为⊙O的切线;
(2)求证:EF2=4OD•OP;
(3)若BC=6,tan∠F=,求AC的长.

  • 题型:未知
  • 难度:未知

如图,在菱形ABCD中,∠A=60°,以点D为圆心的⊙D与边AB相切于点E.

(1)求证:⊙D与边BC也相切;
(2)设⊙D与BD相交于点H,与边CD相交于点F,连接HF.若AB=,求图中阴影部分的面积(结果保留π);
(3)假设⊙D的半径为r,⊙D上一动点M从点F出发,按逆时针方向运动一周,当△MDF与△ABD的面积之比为时,求动点M经过的弧长(结果用含r 的式子表示,保留π).

  • 题型:未知
  • 难度:未知

阅读下列材料,然后解答问题.
经过正四边形(即正方形)各顶点的圆叫做这个正四边形的外接圆,圆心是正四边形的对称中心,这个正四边形叫做这个圆的内接正四边形.
如图,正方形ABCD内接于⊙O,⊙O的面积为S1,正方形ABCD的面积为S2.以圆心O为顶点作∠MON,使∠MON=90°.将∠MON绕点O旋转,OM、ON分别与⊙O交于点E、F,分别与正方形ABCD的边交于点G、H.设由OE、OF、及正方形ABCD的边围成的图形(阴影部分)的面积为S.
(1)当OM经过点A时(如图①),则S、S1、S2之间的关系为:            (用含S1、S2的代数式表示);
(2)当OM⊥AB于G时(如图②),则(1)中的结论仍然成立吗?请说明理由;
(3)当旋转到任意位置时(如图③),则(1)中的结论仍然成立吗?请说明理由;

  • 题型:未知
  • 难度:未知

如图,四边形OABC是平行四边形,以O为圆心,OA为半径的圆交AB于D,延长 AO交⊙O于E,连接CD,CE,若CE是⊙O的切线,解答下列问题:

(1)求证:CD是⊙O的切线;
(2)若平行四边形OABC的两边长是方程的两根,求平行四边形OABC的面积.

  • 题型:未知
  • 难度:未知

如图1,AB为⊙O的直径,点P是直径AB上任意一点,过点P作弦CD⊥AB,垂足为P,过点B的直线与线段AD的延长线交于点F,且∠F=∠ABC.

(1)若CD=2,BP=4,求⊙O的半径;
(2)求证:直线BF是⊙O的切线;
(3)当点P与点O重合时,过点A作⊙O的切线交线段BC的延长线于点E,在其它条件不变的情况下,判断四边形AEBF是什么特殊的四边形?请在图2中补全图象并证明你的结论.

  • 题型:未知
  • 难度:未知

如图,在直角坐标系中,已知,点P从C点出发,沿着折线C﹣D﹣A运动到达点A时停止,过C点作直线GC⊥PC,且与过O、P、C三点的⊙M交于点G,连接OP、PG、OD.

(1)直接写出∠DCO的度数;
(2)当点P在线段CD上运动时,求△OPG的最小面积;
(3)设圆心M的纵坐标为n,试探索:在点P运动的整个过程中,n的取值范围.

  • 题型:未知
  • 难度:未知

如图所示,已知圆锥底面半径r=10cm,母线长为40cm.

(1)求它的侧面展开图的圆心角;
(2)若一甲虫从A点出发沿着圆锥侧面行到母线SA的中点B,求它所走的最短路线。

  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,⊙A与x轴相交于C(﹣2,0),D(﹣8,0)两点,与y轴相切于点B(0,4).

(1)求经过B,C,D三点的抛物线的函数表达式;
(2)设抛物线的顶点为E,证明:直线CE与⊙A相切;
(3)在x轴下方的抛物线上,是否存在一点F,使△BDF面积最大,最大值是多少?并求出点F的坐标.

  • 题型:未知
  • 难度:未知

如图,矩形OACB,A(0,3)、B(6,0),点E在线段OB上,∠AEO=30°,点从点Q(-4,0)出发,沿x轴向右以每秒1个单位长度的速度运动,运动时间为t秒.

(1)求点E的坐标;
(2)当∠PAE=15°时,求t的值;
(3)以点P为圆心,PA为半径的随点P的运动而变化,当与四边形AEBC的边(或边所在的直线)相切时,求t的值.

  • 题型:未知
  • 难度:未知

如图,△ABC是⊙O的内接三角形,AE是⊙O的直径,AF是⊙O的弦,且AF⊥BC于D点.

求证:(1)△ADC∽△ABE;
(2)BE=CF.

  • 题型:未知
  • 难度:未知

初中数学圆幂定理解答题