某校计划采购凳子,商场有 、 两种型号的凳子出售,并规定:对于 型凳子,采购数量若超过250张,则超出部分可在原价基础上每张优惠 元; 型凳子的售价为40元 张.学校经测算,若购买300张 型凳子需要花费14250元;若购买500张 型凳子需要花费21250元.
(1)求 的值;
(2)学校要采购 、 两种型号凳子共900张,且购买 型凳子不少于150张且不超过 型凳子数量的2倍,请通过计算帮学校决策如何分配购买数量可以使得总采购费用最少?最少是多少元?
某校为了了解七年级学生“校本课程”的选修情况,在该校七年级学生中随机抽取部分学生进行了问卷调查,问卷设置了“文学欣赏”、“球类运动”、“动漫制作”、“其他”四个选项,每名同学仅选一项,根据调查结果绘制了如下不完整的频数分布表和扇形统计图.
各类“校本课程”选修情况频数分布表
课程类别 |
频数 |
文学欣赏 |
16 |
球类运动 |
20 |
动漫制作 |
6 |
其他 |
|
合计 |
|
(1)直接写出 、 、 的值;
(2)若该校七年级共有学生600人,请估计选修“球类运动”的学生人数.
已知一次函数 和反比例函数 .
(1)如图1,若 ,且函数 、 的图象都经过点 .
①求 , 的值;
②直接写出当 时 的范围;
(2)如图2,过点 作 轴的平行线 与函数 的图象相交于点 ,与反比例函数 的图象相交于点 .
①若 ,直线 与函数 的图象相交点 .当点 、 、 中的一点到另外两点的距离相等时,求 的值;
②过点 作 轴的平行线与函数 的图象相交于点 .当 的值取不大于1的任意实数时,点 、 间的距离与点 、 间的距离之和 始终是一个定值.求此时 的值及定值 .
小李经营一家水果店,某日到水果批发市场批发一种水果.经了解,一次性批发这种水果不得少于 ,超过 时,所有这种水果的批发单价均为3元 .图中折线表示批发单价 (元 与质量 的函数关系.
(1)求图中线段 所在直线的函数表达式;
(2)小李用800元一次可以批发这种水果的质量是多少?
如图,在平面直角坐标系 中,二次函数图象的顶点坐标为 ,该图象与 轴相交于点 、 ,与 轴相交于点 ,其中点 的横坐标为1.
(1)求该二次函数的表达式;
(2)求 .
某体育看台侧面的示意图如图所示,观众区 的坡度 为 ,顶端 离水平地面 的高度为 ,从顶棚的 处看 处的仰角 ,竖直的立杆上 、 两点间的距离为 , 处到观众区底端 处的水平距离 为 .求:
(1)观众区的水平宽度 ;
(2)顶棚的 处离地面的高度 . , ,结果精确到
小明代表学校参加“我和我的祖国”主题宣传教育活动.该活动分为两个阶段,第一阶段有“歌曲演唱”、“书法展示”、“器乐独奏”3个项目(依次用 、 、 表示),第二阶段有“故事演讲”、“诗歌朗诵”2个项目(依次用 、 表示),参加人员在每个阶段各随机抽取一个项目完成.用画树状图或列表的方法列出小明参加项目的所有等可能的结果,并求小明恰好抽中 、 两个项目的概率.
如图,抛物线 交 轴于 、 两点,其中点 坐标为 ,与 轴交于点 .
(1)求抛物线的函数表达式;
(2)如图①,连接 ,点 在抛物线上,且满足 .求点 的坐标;
(3)如图②,点 为 轴下方抛物线上任意一点,点 是抛物线对称轴与 轴的交点,直线 、 分别交抛物线的对称轴于点 、 .请问 是否为定值?如果是,请求出这个定值;如果不是,请说明理由.
超市销售某种儿童玩具,如果每件利润为40元(市场管理部门规定,该种玩具每件利润不能超过60元),每天可售出50件.根据市场调查发现,销售单价每增加2元,每天销售量会减少1件.设销售单价增加 元,每天售出 件.
(1)请写出 与 之间的函数表达式;
(2)当 为多少时,超市每天销售这种玩具可获利润2250元?
(3)设超市每天销售这种玩具可获利 元,当 为多少时 最大,最大值是多少?
宿迁市政府为了方便市民绿色出行,推出了共享单车服务.图①是某品牌共享单车放在水平地面上的实物图,图②是其示意图,其中 、 都与地面 平行,车轮半径为 , , ,坐垫 与点 的距离 为 .
(1)求坐垫 到地面的距离;
(2)根据经验,当坐垫 到 的距离调整为人体腿长的0.8时,坐骑比较舒适.小明的腿长约为 ,现将坐垫 调整至坐骑舒适高度位置 ,求 的长.
(结果精确到 ,参考数据: , ,
如图,一次函数 的图象与反比例函数 的图象相交于点 、 两点.
(1)求一次函数表达式;
(2)求 的面积.
试题篮
()